This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcmul | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) |
|
| 2 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) |
|
| 3 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) |
|
| 4 | 1 2 3 | pcpremul | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) + sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 5 | 1 | pczpre | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 6 | 5 | 3adant3 | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 7 | 2 | pczpre | |- ( ( P e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 8 | 7 | 3adant2 | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 9 | 6 8 | oveq12d | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( P pCnt A ) + ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) + sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) |
| 10 | zmulcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A x. B ) e. ZZ ) |
|
| 11 | 10 | ad2ant2r | |- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A x. B ) e. ZZ ) |
| 12 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 13 | 12 | anim1i | |- ( ( A e. ZZ /\ A =/= 0 ) -> ( A e. CC /\ A =/= 0 ) ) |
| 14 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 15 | 14 | anim1i | |- ( ( B e. ZZ /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 16 | mulne0 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 ) |
|
| 17 | 13 15 16 | syl2an | |- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 ) |
| 18 | 11 17 | jca | |- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( A x. B ) e. ZZ /\ ( A x. B ) =/= 0 ) ) |
| 19 | 3 | pczpre | |- ( ( P e. Prime /\ ( ( A x. B ) e. ZZ /\ ( A x. B ) =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 20 | 18 19 | sylan2 | |- ( ( P e. Prime /\ ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 21 | 20 | 3impb | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 22 | 4 9 21 | 3eqtr4rd | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) |