This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sylow's first theorem. If P ^ N is a prime power that divides the cardinality of G , then G has a supgroup with size P ^ N . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | |- X = ( Base ` G ) |
|
| sylow1.g | |- ( ph -> G e. Grp ) |
||
| sylow1.f | |- ( ph -> X e. Fin ) |
||
| sylow1.p | |- ( ph -> P e. Prime ) |
||
| sylow1.n | |- ( ph -> N e. NN0 ) |
||
| sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
||
| Assertion | sylow1 | |- ( ph -> E. g e. ( SubGrp ` G ) ( # ` g ) = ( P ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | |- X = ( Base ` G ) |
|
| 2 | sylow1.g | |- ( ph -> G e. Grp ) |
|
| 3 | sylow1.f | |- ( ph -> X e. Fin ) |
|
| 4 | sylow1.p | |- ( ph -> P e. Prime ) |
|
| 5 | sylow1.n | |- ( ph -> N e. NN0 ) |
|
| 6 | sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | eqid | |- { s e. ~P X | ( # ` s ) = ( P ^ N ) } = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
|
| 9 | oveq2 | |- ( s = z -> ( u ( +g ` G ) s ) = ( u ( +g ` G ) z ) ) |
|
| 10 | 9 | cbvmptv | |- ( s e. v |-> ( u ( +g ` G ) s ) ) = ( z e. v |-> ( u ( +g ` G ) z ) ) |
| 11 | oveq1 | |- ( u = x -> ( u ( +g ` G ) z ) = ( x ( +g ` G ) z ) ) |
|
| 12 | 11 | mpteq2dv | |- ( u = x -> ( z e. v |-> ( u ( +g ` G ) z ) ) = ( z e. v |-> ( x ( +g ` G ) z ) ) ) |
| 13 | 10 12 | eqtrid | |- ( u = x -> ( s e. v |-> ( u ( +g ` G ) s ) ) = ( z e. v |-> ( x ( +g ` G ) z ) ) ) |
| 14 | 13 | rneqd | |- ( u = x -> ran ( s e. v |-> ( u ( +g ` G ) s ) ) = ran ( z e. v |-> ( x ( +g ` G ) z ) ) ) |
| 15 | mpteq1 | |- ( v = y -> ( z e. v |-> ( x ( +g ` G ) z ) ) = ( z e. y |-> ( x ( +g ` G ) z ) ) ) |
|
| 16 | 15 | rneqd | |- ( v = y -> ran ( z e. v |-> ( x ( +g ` G ) z ) ) = ran ( z e. y |-> ( x ( +g ` G ) z ) ) ) |
| 17 | 14 16 | cbvmpov | |- ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) = ( x e. X , y e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( z e. y |-> ( x ( +g ` G ) z ) ) ) |
| 18 | preq12 | |- ( ( a = x /\ b = y ) -> { a , b } = { x , y } ) |
|
| 19 | 18 | sseq1d | |- ( ( a = x /\ b = y ) -> ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } <-> { x , y } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) ) |
| 20 | oveq2 | |- ( a = x -> ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) ) |
|
| 21 | id | |- ( b = y -> b = y ) |
|
| 22 | 20 21 | eqeqan12d | |- ( ( a = x /\ b = y ) -> ( ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b <-> ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) ) |
| 23 | 22 | rexbidv | |- ( ( a = x /\ b = y ) -> ( E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b <-> E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) ) |
| 24 | 19 23 | anbi12d | |- ( ( a = x /\ b = y ) -> ( ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) <-> ( { x , y } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) ) ) |
| 25 | 24 | cbvopabv | |- { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } = { <. x , y >. | ( { x , y } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) } |
| 26 | 1 2 3 4 5 6 7 8 17 25 | sylow1lem3 | |- ( ph -> E. h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 27 | 2 | adantr | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> G e. Grp ) |
| 28 | 3 | adantr | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> X e. Fin ) |
| 29 | 4 | adantr | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> P e. Prime ) |
| 30 | 5 | adantr | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> N e. NN0 ) |
| 31 | 6 | adantr | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> ( P ^ N ) || ( # ` X ) ) |
| 32 | simprl | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) |
|
| 33 | eqid | |- { t e. X | ( t ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) h ) = h } = { t e. X | ( t ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) h ) = h } |
|
| 34 | simprr | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
|
| 35 | 1 27 28 29 30 31 7 8 17 25 32 33 34 | sylow1lem5 | |- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> E. g e. ( SubGrp ` G ) ( # ` g ) = ( P ^ N ) ) |
| 36 | 26 35 | rexlimddv | |- ( ph -> E. g e. ( SubGrp ` G ) ( # ` g ) = ( P ^ N ) ) |