This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub .) (Contributed by NM, 14-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znn0sub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 3 | subge0 | |- ( ( N e. RR /\ M e. RR ) -> ( 0 <_ ( N - M ) <-> M <_ N ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( 0 <_ ( N - M ) <-> M <_ N ) ) |
| 5 | zsubcl | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
|
| 6 | 5 | biantrurd | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( 0 <_ ( N - M ) <-> ( ( N - M ) e. ZZ /\ 0 <_ ( N - M ) ) ) ) |
| 7 | 4 6 | bitr3d | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( M <_ N <-> ( ( N - M ) e. ZZ /\ 0 <_ ( N - M ) ) ) ) |
| 8 | 7 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( ( N - M ) e. ZZ /\ 0 <_ ( N - M ) ) ) ) |
| 9 | elnn0z | |- ( ( N - M ) e. NN0 <-> ( ( N - M ) e. ZZ /\ 0 <_ ( N - M ) ) ) |
|
| 10 | 8 9 | bitr4di | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |