This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 27-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hasheq0 | |- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre | |- +oo e/ RR |
|
| 2 | 1 | neli | |- -. +oo e. RR |
| 3 | hashinf | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 4 | 3 | eleq1d | |- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) e. RR <-> +oo e. RR ) ) |
| 5 | 2 4 | mtbiri | |- ( ( A e. V /\ -. A e. Fin ) -> -. ( # ` A ) e. RR ) |
| 6 | id | |- ( ( # ` A ) = 0 -> ( # ` A ) = 0 ) |
|
| 7 | 0re | |- 0 e. RR |
|
| 8 | 6 7 | eqeltrdi | |- ( ( # ` A ) = 0 -> ( # ` A ) e. RR ) |
| 9 | 5 8 | nsyl | |- ( ( A e. V /\ -. A e. Fin ) -> -. ( # ` A ) = 0 ) |
| 10 | id | |- ( A = (/) -> A = (/) ) |
|
| 11 | 0fi | |- (/) e. Fin |
|
| 12 | 10 11 | eqeltrdi | |- ( A = (/) -> A e. Fin ) |
| 13 | 12 | con3i | |- ( -. A e. Fin -> -. A = (/) ) |
| 14 | 13 | adantl | |- ( ( A e. V /\ -. A e. Fin ) -> -. A = (/) ) |
| 15 | 9 14 | 2falsed | |- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 16 | 15 | ex | |- ( A e. V -> ( -. A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) ) |
| 17 | hashen | |- ( ( A e. Fin /\ (/) e. Fin ) -> ( ( # ` A ) = ( # ` (/) ) <-> A ~~ (/) ) ) |
|
| 18 | 11 17 | mpan2 | |- ( A e. Fin -> ( ( # ` A ) = ( # ` (/) ) <-> A ~~ (/) ) ) |
| 19 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 20 | 19 | fveq2i | |- ( # ` ( 1 ... 0 ) ) = ( # ` (/) ) |
| 21 | 0nn0 | |- 0 e. NN0 |
|
| 22 | hashfz1 | |- ( 0 e. NN0 -> ( # ` ( 1 ... 0 ) ) = 0 ) |
|
| 23 | 21 22 | ax-mp | |- ( # ` ( 1 ... 0 ) ) = 0 |
| 24 | 20 23 | eqtr3i | |- ( # ` (/) ) = 0 |
| 25 | 24 | eqeq2i | |- ( ( # ` A ) = ( # ` (/) ) <-> ( # ` A ) = 0 ) |
| 26 | en0 | |- ( A ~~ (/) <-> A = (/) ) |
|
| 27 | 18 25 26 | 3bitr3g | |- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 28 | 16 27 | pm2.61d2 | |- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |