This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proportion of one binomial coefficient to another with N and K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcp1nk | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzel1 | |- ( K e. ( 0 ... N ) -> 0 e. ZZ ) |
|
| 2 | elfzel2 | |- ( K e. ( 0 ... N ) -> N e. ZZ ) |
|
| 3 | elfzelz | |- ( K e. ( 0 ... N ) -> K e. ZZ ) |
|
| 4 | 1zzd | |- ( K e. ( 0 ... N ) -> 1 e. ZZ ) |
|
| 5 | fzaddel | |- ( ( ( 0 e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 0 ... N ) <-> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
|
| 6 | 1 2 3 4 5 | syl22anc | |- ( K e. ( 0 ... N ) -> ( K e. ( 0 ... N ) <-> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
| 7 | 6 | ibi | |- ( K e. ( 0 ... N ) -> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
| 8 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 9 | 8 | oveq1i | |- ( 1 ... ( N + 1 ) ) = ( ( 0 + 1 ) ... ( N + 1 ) ) |
| 10 | 7 9 | eleqtrrdi | |- ( K e. ( 0 ... N ) -> ( K + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 11 | bcm1k | |- ( ( K + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) ) |
|
| 12 | 10 11 | syl | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) ) |
| 13 | 3 | zcnd | |- ( K e. ( 0 ... N ) -> K e. CC ) |
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | pncan | |- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
|
| 16 | 13 14 15 | sylancl | |- ( K e. ( 0 ... N ) -> ( ( K + 1 ) - 1 ) = K ) |
| 17 | 16 | oveq2d | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) = ( ( N + 1 ) _C K ) ) |
| 18 | bcp1n | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
|
| 19 | 17 18 | eqtrd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| 20 | 16 | oveq2d | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) = ( ( N + 1 ) - K ) ) |
| 21 | 20 | oveq1d | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) = ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) |
| 22 | 19 21 | oveq12d | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) = ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) |
| 23 | bcrpcl | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |
|
| 24 | 23 | rpcnd | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. CC ) |
| 25 | 2 | peano2zd | |- ( K e. ( 0 ... N ) -> ( N + 1 ) e. ZZ ) |
| 26 | 25 | zred | |- ( K e. ( 0 ... N ) -> ( N + 1 ) e. RR ) |
| 27 | 3 | zred | |- ( K e. ( 0 ... N ) -> K e. RR ) |
| 28 | 2 | zred | |- ( K e. ( 0 ... N ) -> N e. RR ) |
| 29 | elfzle2 | |- ( K e. ( 0 ... N ) -> K <_ N ) |
|
| 30 | 28 | ltp1d | |- ( K e. ( 0 ... N ) -> N < ( N + 1 ) ) |
| 31 | 27 28 26 29 30 | lelttrd | |- ( K e. ( 0 ... N ) -> K < ( N + 1 ) ) |
| 32 | znnsub | |- ( ( K e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( K < ( N + 1 ) <-> ( ( N + 1 ) - K ) e. NN ) ) |
|
| 33 | 3 25 32 | syl2anc | |- ( K e. ( 0 ... N ) -> ( K < ( N + 1 ) <-> ( ( N + 1 ) - K ) e. NN ) ) |
| 34 | 31 33 | mpbid | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. NN ) |
| 35 | 26 34 | nndivred | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) / ( ( N + 1 ) - K ) ) e. RR ) |
| 36 | 35 | recnd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) / ( ( N + 1 ) - K ) ) e. CC ) |
| 37 | 34 | nnred | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. RR ) |
| 38 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 39 | nn0p1nn | |- ( K e. NN0 -> ( K + 1 ) e. NN ) |
|
| 40 | 38 39 | syl | |- ( K e. ( 0 ... N ) -> ( K + 1 ) e. NN ) |
| 41 | 37 40 | nndivred | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) / ( K + 1 ) ) e. RR ) |
| 42 | 41 | recnd | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) / ( K + 1 ) ) e. CC ) |
| 43 | 24 36 42 | mulassd | |- ( K e. ( 0 ... N ) -> ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) ) |
| 44 | 25 | zcnd | |- ( K e. ( 0 ... N ) -> ( N + 1 ) e. CC ) |
| 45 | 34 | nncnd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. CC ) |
| 46 | 40 | nncnd | |- ( K e. ( 0 ... N ) -> ( K + 1 ) e. CC ) |
| 47 | 34 | nnne0d | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) =/= 0 ) |
| 48 | 40 | nnne0d | |- ( K e. ( 0 ... N ) -> ( K + 1 ) =/= 0 ) |
| 49 | 44 45 46 47 48 | dmdcan2d | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N + 1 ) / ( K + 1 ) ) ) |
| 50 | 49 | oveq2d | |- ( K e. ( 0 ... N ) -> ( ( N _C K ) x. ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
| 51 | 43 50 | eqtrd | |- ( K e. ( 0 ... N ) -> ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
| 52 | 22 51 | eqtrd | |- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
| 53 | 12 52 | eqtrd | |- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |