This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashbc | |- ( ( A e. Fin /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
|
| 2 | 1 | oveq1d | |- ( w = (/) -> ( ( # ` w ) _C k ) = ( ( # ` (/) ) _C k ) ) |
| 3 | pweq | |- ( w = (/) -> ~P w = ~P (/) ) |
|
| 4 | 3 | rabeqdv | |- ( w = (/) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P (/) | ( # ` x ) = k } ) |
| 5 | 4 | fveq2d | |- ( w = (/) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 6 | 2 5 | eqeq12d | |- ( w = (/) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) |
| 7 | 6 | ralbidv | |- ( w = (/) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) ) |
| 8 | fveq2 | |- ( w = y -> ( # ` w ) = ( # ` y ) ) |
|
| 9 | 8 | oveq1d | |- ( w = y -> ( ( # ` w ) _C k ) = ( ( # ` y ) _C k ) ) |
| 10 | pweq | |- ( w = y -> ~P w = ~P y ) |
|
| 11 | 10 | rabeqdv | |- ( w = y -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = k } ) |
| 12 | 11 | fveq2d | |- ( w = y -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) |
| 13 | 9 12 | eqeq12d | |- ( w = y -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) |
| 14 | 13 | ralbidv | |- ( w = y -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) ) ) |
| 15 | fveq2 | |- ( w = ( y u. { z } ) -> ( # ` w ) = ( # ` ( y u. { z } ) ) ) |
|
| 16 | 15 | oveq1d | |- ( w = ( y u. { z } ) -> ( ( # ` w ) _C k ) = ( ( # ` ( y u. { z } ) ) _C k ) ) |
| 17 | pweq | |- ( w = ( y u. { z } ) -> ~P w = ~P ( y u. { z } ) ) |
|
| 18 | 17 | rabeqdv | |- ( w = ( y u. { z } ) -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) |
| 19 | 18 | fveq2d | |- ( w = ( y u. { z } ) -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) |
| 20 | 16 19 | eqeq12d | |- ( w = ( y u. { z } ) -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 21 | 20 | ralbidv | |- ( w = ( y u. { z } ) -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 22 | fveq2 | |- ( w = A -> ( # ` w ) = ( # ` A ) ) |
|
| 23 | 22 | oveq1d | |- ( w = A -> ( ( # ` w ) _C k ) = ( ( # ` A ) _C k ) ) |
| 24 | pweq | |- ( w = A -> ~P w = ~P A ) |
|
| 25 | 24 | rabeqdv | |- ( w = A -> { x e. ~P w | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = k } ) |
| 26 | 25 | fveq2d | |- ( w = A -> ( # ` { x e. ~P w | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) |
| 27 | 23 26 | eqeq12d | |- ( w = A -> ( ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) |
| 28 | 27 | ralbidv | |- ( w = A -> ( A. k e. ZZ ( ( # ` w ) _C k ) = ( # ` { x e. ~P w | ( # ` x ) = k } ) <-> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) ) |
| 29 | hash0 | |- ( # ` (/) ) = 0 |
|
| 30 | 29 | a1i | |- ( k e. ( 0 ... 0 ) -> ( # ` (/) ) = 0 ) |
| 31 | elfz1eq | |- ( k e. ( 0 ... 0 ) -> k = 0 ) |
|
| 32 | 30 31 | oveq12d | |- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( 0 _C 0 ) ) |
| 33 | 0nn0 | |- 0 e. NN0 |
|
| 34 | bcn0 | |- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
|
| 35 | 33 34 | ax-mp | |- ( 0 _C 0 ) = 1 |
| 36 | 32 35 | eqtrdi | |- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = 1 ) |
| 37 | 31 | eqcomd | |- ( k e. ( 0 ... 0 ) -> 0 = k ) |
| 38 | pw0 | |- ~P (/) = { (/) } |
|
| 39 | 38 | raleqi | |- ( A. x e. ~P (/) ( # ` x ) = k <-> A. x e. { (/) } ( # ` x ) = k ) |
| 40 | 0ex | |- (/) e. _V |
|
| 41 | fveq2 | |- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
|
| 42 | 41 29 | eqtrdi | |- ( x = (/) -> ( # ` x ) = 0 ) |
| 43 | 42 | eqeq1d | |- ( x = (/) -> ( ( # ` x ) = k <-> 0 = k ) ) |
| 44 | 40 43 | ralsn | |- ( A. x e. { (/) } ( # ` x ) = k <-> 0 = k ) |
| 45 | 39 44 | bitri | |- ( A. x e. ~P (/) ( # ` x ) = k <-> 0 = k ) |
| 46 | 37 45 | sylibr | |- ( k e. ( 0 ... 0 ) -> A. x e. ~P (/) ( # ` x ) = k ) |
| 47 | rabid2 | |- ( ~P (/) = { x e. ~P (/) | ( # ` x ) = k } <-> A. x e. ~P (/) ( # ` x ) = k ) |
|
| 48 | 46 47 | sylibr | |- ( k e. ( 0 ... 0 ) -> ~P (/) = { x e. ~P (/) | ( # ` x ) = k } ) |
| 49 | 48 38 | eqtr3di | |- ( k e. ( 0 ... 0 ) -> { x e. ~P (/) | ( # ` x ) = k } = { (/) } ) |
| 50 | 49 | fveq2d | |- ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` { (/) } ) ) |
| 51 | hashsng | |- ( (/) e. _V -> ( # ` { (/) } ) = 1 ) |
|
| 52 | 40 51 | ax-mp | |- ( # ` { (/) } ) = 1 |
| 53 | 50 52 | eqtrdi | |- ( k e. ( 0 ... 0 ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 1 ) |
| 54 | 36 53 | eqtr4d | |- ( k e. ( 0 ... 0 ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 55 | 54 | adantl | |- ( ( k e. ZZ /\ k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 56 | 29 | oveq1i | |- ( ( # ` (/) ) _C k ) = ( 0 _C k ) |
| 57 | bcval3 | |- ( ( 0 e. NN0 /\ k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) |
|
| 58 | 33 57 | mp3an1 | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = 0 ) |
| 59 | id | |- ( 0 = k -> 0 = k ) |
|
| 60 | 0z | |- 0 e. ZZ |
|
| 61 | elfz3 | |- ( 0 e. ZZ -> 0 e. ( 0 ... 0 ) ) |
|
| 62 | 60 61 | ax-mp | |- 0 e. ( 0 ... 0 ) |
| 63 | 59 62 | eqeltrrdi | |- ( 0 = k -> k e. ( 0 ... 0 ) ) |
| 64 | 63 | con3i | |- ( -. k e. ( 0 ... 0 ) -> -. 0 = k ) |
| 65 | 64 | adantl | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> -. 0 = k ) |
| 66 | 38 | raleqi | |- ( A. x e. ~P (/) -. ( # ` x ) = k <-> A. x e. { (/) } -. ( # ` x ) = k ) |
| 67 | 43 | notbid | |- ( x = (/) -> ( -. ( # ` x ) = k <-> -. 0 = k ) ) |
| 68 | 40 67 | ralsn | |- ( A. x e. { (/) } -. ( # ` x ) = k <-> -. 0 = k ) |
| 69 | 66 68 | bitri | |- ( A. x e. ~P (/) -. ( # ` x ) = k <-> -. 0 = k ) |
| 70 | 65 69 | sylibr | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> A. x e. ~P (/) -. ( # ` x ) = k ) |
| 71 | rabeq0 | |- ( { x e. ~P (/) | ( # ` x ) = k } = (/) <-> A. x e. ~P (/) -. ( # ` x ) = k ) |
|
| 72 | 70 71 | sylibr | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> { x e. ~P (/) | ( # ` x ) = k } = (/) ) |
| 73 | 72 | fveq2d | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = ( # ` (/) ) ) |
| 74 | 73 29 | eqtrdi | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( # ` { x e. ~P (/) | ( # ` x ) = k } ) = 0 ) |
| 75 | 58 74 | eqtr4d | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( 0 _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 76 | 56 75 | eqtrid | |- ( ( k e. ZZ /\ -. k e. ( 0 ... 0 ) ) -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 77 | 55 76 | pm2.61dan | |- ( k e. ZZ -> ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) ) |
| 78 | 77 | rgen | |- A. k e. ZZ ( ( # ` (/) ) _C k ) = ( # ` { x e. ~P (/) | ( # ` x ) = k } ) |
| 79 | oveq2 | |- ( k = j -> ( ( # ` y ) _C k ) = ( ( # ` y ) _C j ) ) |
|
| 80 | eqeq2 | |- ( k = j -> ( ( # ` x ) = k <-> ( # ` x ) = j ) ) |
|
| 81 | 80 | rabbidv | |- ( k = j -> { x e. ~P y | ( # ` x ) = k } = { x e. ~P y | ( # ` x ) = j } ) |
| 82 | fveqeq2 | |- ( x = z -> ( ( # ` x ) = j <-> ( # ` z ) = j ) ) |
|
| 83 | 82 | cbvrabv | |- { x e. ~P y | ( # ` x ) = j } = { z e. ~P y | ( # ` z ) = j } |
| 84 | 81 83 | eqtrdi | |- ( k = j -> { x e. ~P y | ( # ` x ) = k } = { z e. ~P y | ( # ` z ) = j } ) |
| 85 | 84 | fveq2d | |- ( k = j -> ( # ` { x e. ~P y | ( # ` x ) = k } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 86 | 79 85 | eqeq12d | |- ( k = j -> ( ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) |
| 87 | 86 | cbvralvw | |- ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 88 | simpll | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> y e. Fin ) |
|
| 89 | simplr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> -. z e. y ) |
|
| 90 | simprr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
|
| 91 | 83 | fveq2i | |- ( # ` { x e. ~P y | ( # ` x ) = j } ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) |
| 92 | 91 | eqeq2i | |- ( ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 93 | 92 | ralbii | |- ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) <-> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) |
| 94 | 90 93 | sylibr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { x e. ~P y | ( # ` x ) = j } ) ) |
| 95 | simprl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> k e. ZZ ) |
|
| 96 | 88 89 94 95 | hashbclem | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( k e. ZZ /\ A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) ) ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) |
| 97 | 96 | expr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ k e. ZZ ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 98 | 97 | ralrimdva | |- ( ( y e. Fin /\ -. z e. y ) -> ( A. j e. ZZ ( ( # ` y ) _C j ) = ( # ` { z e. ~P y | ( # ` z ) = j } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 99 | 87 98 | biimtrid | |- ( ( y e. Fin /\ -. z e. y ) -> ( A. k e. ZZ ( ( # ` y ) _C k ) = ( # ` { x e. ~P y | ( # ` x ) = k } ) -> A. k e. ZZ ( ( # ` ( y u. { z } ) ) _C k ) = ( # ` { x e. ~P ( y u. { z } ) | ( # ` x ) = k } ) ) ) |
| 100 | 7 14 21 28 78 99 | findcard2s | |- ( A e. Fin -> A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) ) |
| 101 | oveq2 | |- ( k = K -> ( ( # ` A ) _C k ) = ( ( # ` A ) _C K ) ) |
|
| 102 | eqeq2 | |- ( k = K -> ( ( # ` x ) = k <-> ( # ` x ) = K ) ) |
|
| 103 | 102 | rabbidv | |- ( k = K -> { x e. ~P A | ( # ` x ) = k } = { x e. ~P A | ( # ` x ) = K } ) |
| 104 | 103 | fveq2d | |- ( k = K -> ( # ` { x e. ~P A | ( # ` x ) = k } ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
| 105 | 101 104 | eqeq12d | |- ( k = K -> ( ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) <-> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) ) |
| 106 | 105 | rspccva | |- ( ( A. k e. ZZ ( ( # ` A ) _C k ) = ( # ` { x e. ~P A | ( # ` x ) = k } ) /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |
| 107 | 100 106 | sylan | |- ( ( A e. Fin /\ K e. ZZ ) -> ( ( # ` A ) _C K ) = ( # ` { x e. ~P A | ( # ` x ) = K } ) ) |