This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If T is between 0 and 1 , then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem5.1 | |- D = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) |
|
| stirlinglem5.2 | |- E = ( j e. NN |-> ( ( T ^ j ) / j ) ) |
||
| stirlinglem5.3 | |- F = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) ) |
||
| stirlinglem5.4 | |- H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
||
| stirlinglem5.5 | |- G = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) |
||
| stirlinglem5.6 | |- ( ph -> T e. RR+ ) |
||
| stirlinglem5.7 | |- ( ph -> ( abs ` T ) < 1 ) |
||
| Assertion | stirlinglem5 | |- ( ph -> seq 0 ( + , H ) ~~> ( log ` ( ( 1 + T ) / ( 1 - T ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem5.1 | |- D = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) |
|
| 2 | stirlinglem5.2 | |- E = ( j e. NN |-> ( ( T ^ j ) / j ) ) |
|
| 3 | stirlinglem5.3 | |- F = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) ) |
|
| 4 | stirlinglem5.4 | |- H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
|
| 5 | stirlinglem5.5 | |- G = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) |
|
| 6 | stirlinglem5.6 | |- ( ph -> T e. RR+ ) |
|
| 7 | stirlinglem5.7 | |- ( ph -> ( abs ` T ) < 1 ) |
|
| 8 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 9 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 10 | 1 | a1i | |- ( ph -> D = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) ) |
| 11 | 1cnd | |- ( ( ph /\ j e. NN ) -> 1 e. CC ) |
|
| 12 | 11 | negcld | |- ( ( ph /\ j e. NN ) -> -u 1 e. CC ) |
| 13 | nnm1nn0 | |- ( j e. NN -> ( j - 1 ) e. NN0 ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ j e. NN ) -> ( j - 1 ) e. NN0 ) |
| 15 | 12 14 | expcld | |- ( ( ph /\ j e. NN ) -> ( -u 1 ^ ( j - 1 ) ) e. CC ) |
| 16 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ j e. NN ) -> j e. CC ) |
| 18 | 6 | rpred | |- ( ph -> T e. RR ) |
| 19 | 18 | recnd | |- ( ph -> T e. CC ) |
| 20 | 19 | adantr | |- ( ( ph /\ j e. NN ) -> T e. CC ) |
| 21 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 22 | 21 | adantl | |- ( ( ph /\ j e. NN ) -> j e. NN0 ) |
| 23 | 20 22 | expcld | |- ( ( ph /\ j e. NN ) -> ( T ^ j ) e. CC ) |
| 24 | nnne0 | |- ( j e. NN -> j =/= 0 ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ j e. NN ) -> j =/= 0 ) |
| 26 | 15 17 23 25 | div32d | |- ( ( ph /\ j e. NN ) -> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( T ^ j ) ) = ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) |
| 27 | 11 20 | pncan2d | |- ( ( ph /\ j e. NN ) -> ( ( 1 + T ) - 1 ) = T ) |
| 28 | 27 | eqcomd | |- ( ( ph /\ j e. NN ) -> T = ( ( 1 + T ) - 1 ) ) |
| 29 | 28 | oveq1d | |- ( ( ph /\ j e. NN ) -> ( T ^ j ) = ( ( ( 1 + T ) - 1 ) ^ j ) ) |
| 30 | 29 | oveq2d | |- ( ( ph /\ j e. NN ) -> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( T ^ j ) ) = ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) |
| 31 | 26 30 | eqtr3d | |- ( ( ph /\ j e. NN ) -> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) = ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) |
| 32 | 31 | mpteq2dva | |- ( ph -> ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) |
| 33 | 10 32 | eqtrd | |- ( ph -> D = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) |
| 34 | 33 | seqeq3d | |- ( ph -> seq 1 ( + , D ) = seq 1 ( + , ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) ) |
| 35 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 36 | 35 19 | addcld | |- ( ph -> ( 1 + T ) e. CC ) |
| 37 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 38 | 37 | cnmetdval | |- ( ( 1 e. CC /\ ( 1 + T ) e. CC ) -> ( 1 ( abs o. - ) ( 1 + T ) ) = ( abs ` ( 1 - ( 1 + T ) ) ) ) |
| 39 | 35 36 38 | syl2anc | |- ( ph -> ( 1 ( abs o. - ) ( 1 + T ) ) = ( abs ` ( 1 - ( 1 + T ) ) ) ) |
| 40 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 41 | 40 | a1i | |- ( ph -> ( 1 - 1 ) = 0 ) |
| 42 | 41 | oveq1d | |- ( ph -> ( ( 1 - 1 ) - T ) = ( 0 - T ) ) |
| 43 | 35 35 19 | subsub4d | |- ( ph -> ( ( 1 - 1 ) - T ) = ( 1 - ( 1 + T ) ) ) |
| 44 | df-neg | |- -u T = ( 0 - T ) |
|
| 45 | 44 | eqcomi | |- ( 0 - T ) = -u T |
| 46 | 45 | a1i | |- ( ph -> ( 0 - T ) = -u T ) |
| 47 | 42 43 46 | 3eqtr3d | |- ( ph -> ( 1 - ( 1 + T ) ) = -u T ) |
| 48 | 47 | fveq2d | |- ( ph -> ( abs ` ( 1 - ( 1 + T ) ) ) = ( abs ` -u T ) ) |
| 49 | 19 | absnegd | |- ( ph -> ( abs ` -u T ) = ( abs ` T ) ) |
| 50 | 49 7 | eqbrtrd | |- ( ph -> ( abs ` -u T ) < 1 ) |
| 51 | 48 50 | eqbrtrd | |- ( ph -> ( abs ` ( 1 - ( 1 + T ) ) ) < 1 ) |
| 52 | 39 51 | eqbrtrd | |- ( ph -> ( 1 ( abs o. - ) ( 1 + T ) ) < 1 ) |
| 53 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 54 | 53 | a1i | |- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 55 | 1red | |- ( ph -> 1 e. RR ) |
|
| 56 | 55 | rexrd | |- ( ph -> 1 e. RR* ) |
| 57 | elbl2 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( 1 + T ) e. CC ) ) -> ( ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) ( 1 + T ) ) < 1 ) ) |
|
| 58 | 54 56 35 36 57 | syl22anc | |- ( ph -> ( ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) ( 1 + T ) ) < 1 ) ) |
| 59 | 52 58 | mpbird | |- ( ph -> ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 60 | eqid | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| 61 | 60 | logtayl2 | |- ( ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> seq 1 ( + , ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) ~~> ( log ` ( 1 + T ) ) ) |
| 62 | 59 61 | syl | |- ( ph -> seq 1 ( + , ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) ~~> ( log ` ( 1 + T ) ) ) |
| 63 | 34 62 | eqbrtrd | |- ( ph -> seq 1 ( + , D ) ~~> ( log ` ( 1 + T ) ) ) |
| 64 | seqex | |- seq 1 ( + , F ) e. _V |
|
| 65 | 64 | a1i | |- ( ph -> seq 1 ( + , F ) e. _V ) |
| 66 | 2 | a1i | |- ( ph -> E = ( j e. NN |-> ( ( T ^ j ) / j ) ) ) |
| 67 | 66 | seqeq3d | |- ( ph -> seq 1 ( + , E ) = seq 1 ( + , ( j e. NN |-> ( ( T ^ j ) / j ) ) ) ) |
| 68 | logtayl | |- ( ( T e. CC /\ ( abs ` T ) < 1 ) -> seq 1 ( + , ( j e. NN |-> ( ( T ^ j ) / j ) ) ) ~~> -u ( log ` ( 1 - T ) ) ) |
|
| 69 | 19 7 68 | syl2anc | |- ( ph -> seq 1 ( + , ( j e. NN |-> ( ( T ^ j ) / j ) ) ) ~~> -u ( log ` ( 1 - T ) ) ) |
| 70 | 67 69 | eqbrtrd | |- ( ph -> seq 1 ( + , E ) ~~> -u ( log ` ( 1 - T ) ) ) |
| 71 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 72 | 71 8 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 73 | oveq1 | |- ( j = n -> ( j - 1 ) = ( n - 1 ) ) |
|
| 74 | 73 | oveq2d | |- ( j = n -> ( -u 1 ^ ( j - 1 ) ) = ( -u 1 ^ ( n - 1 ) ) ) |
| 75 | oveq2 | |- ( j = n -> ( T ^ j ) = ( T ^ n ) ) |
|
| 76 | id | |- ( j = n -> j = n ) |
|
| 77 | 75 76 | oveq12d | |- ( j = n -> ( ( T ^ j ) / j ) = ( ( T ^ n ) / n ) ) |
| 78 | 74 77 | oveq12d | |- ( j = n -> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) ) |
| 79 | elfznn | |- ( n e. ( 1 ... k ) -> n e. NN ) |
|
| 80 | 79 | adantl | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN ) |
| 81 | 1cnd | |- ( n e. NN -> 1 e. CC ) |
|
| 82 | 81 | negcld | |- ( n e. NN -> -u 1 e. CC ) |
| 83 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 84 | 82 83 | expcld | |- ( n e. NN -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
| 85 | 80 84 | syl | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
| 86 | 19 | ad2antrr | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> T e. CC ) |
| 87 | 80 | nnnn0d | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN0 ) |
| 88 | 86 87 | expcld | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( T ^ n ) e. CC ) |
| 89 | 80 | nncnd | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. CC ) |
| 90 | 80 | nnne0d | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n =/= 0 ) |
| 91 | 88 89 90 | divcld | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( T ^ n ) / n ) e. CC ) |
| 92 | 85 91 | mulcld | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) e. CC ) |
| 93 | 1 78 80 92 | fvmptd3 | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( D ` n ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) ) |
| 94 | 93 92 | eqeltrd | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( D ` n ) e. CC ) |
| 95 | addcl | |- ( ( n e. CC /\ i e. CC ) -> ( n + i ) e. CC ) |
|
| 96 | 95 | adantl | |- ( ( ( ph /\ k e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( n + i ) e. CC ) |
| 97 | 72 94 96 | seqcl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , D ) ` k ) e. CC ) |
| 98 | 2 77 80 91 | fvmptd3 | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( E ` n ) = ( ( T ^ n ) / n ) ) |
| 99 | 98 91 | eqeltrd | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( E ` n ) e. CC ) |
| 100 | 72 99 96 | seqcl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , E ) ` k ) e. CC ) |
| 101 | simpll | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ph ) |
|
| 102 | 78 77 | oveq12d | |- ( j = n -> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) |
| 103 | simpr | |- ( ( ph /\ n e. NN ) -> n e. NN ) |
|
| 104 | 84 | adantl | |- ( ( ph /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
| 105 | 19 | adantr | |- ( ( ph /\ n e. NN ) -> T e. CC ) |
| 106 | 103 | nnnn0d | |- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 107 | 105 106 | expcld | |- ( ( ph /\ n e. NN ) -> ( T ^ n ) e. CC ) |
| 108 | 103 | nncnd | |- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 109 | 103 | nnne0d | |- ( ( ph /\ n e. NN ) -> n =/= 0 ) |
| 110 | 107 108 109 | divcld | |- ( ( ph /\ n e. NN ) -> ( ( T ^ n ) / n ) e. CC ) |
| 111 | 104 110 | mulcld | |- ( ( ph /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) e. CC ) |
| 112 | 111 110 | addcld | |- ( ( ph /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) e. CC ) |
| 113 | 3 102 103 112 | fvmptd3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) |
| 114 | 1 78 103 111 | fvmptd3 | |- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) ) |
| 115 | 114 | eqcomd | |- ( ( ph /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) = ( D ` n ) ) |
| 116 | 2 77 103 110 | fvmptd3 | |- ( ( ph /\ n e. NN ) -> ( E ` n ) = ( ( T ^ n ) / n ) ) |
| 117 | 116 | eqcomd | |- ( ( ph /\ n e. NN ) -> ( ( T ^ n ) / n ) = ( E ` n ) ) |
| 118 | 115 117 | oveq12d | |- ( ( ph /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = ( ( D ` n ) + ( E ` n ) ) ) |
| 119 | 113 118 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( D ` n ) + ( E ` n ) ) ) |
| 120 | 101 80 119 | syl2anc | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( F ` n ) = ( ( D ` n ) + ( E ` n ) ) ) |
| 121 | 72 94 99 120 | seradd | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) = ( ( seq 1 ( + , D ) ` k ) + ( seq 1 ( + , E ) ` k ) ) ) |
| 122 | 8 9 63 65 70 97 100 121 | climadd | |- ( ph -> seq 1 ( + , F ) ~~> ( ( log ` ( 1 + T ) ) + -u ( log ` ( 1 - T ) ) ) ) |
| 123 | 1rp | |- 1 e. RR+ |
|
| 124 | 123 | a1i | |- ( ph -> 1 e. RR+ ) |
| 125 | 124 6 | rpaddcld | |- ( ph -> ( 1 + T ) e. RR+ ) |
| 126 | 125 | rpne0d | |- ( ph -> ( 1 + T ) =/= 0 ) |
| 127 | 36 126 | logcld | |- ( ph -> ( log ` ( 1 + T ) ) e. CC ) |
| 128 | 35 19 | subcld | |- ( ph -> ( 1 - T ) e. CC ) |
| 129 | 18 55 | absltd | |- ( ph -> ( ( abs ` T ) < 1 <-> ( -u 1 < T /\ T < 1 ) ) ) |
| 130 | 7 129 | mpbid | |- ( ph -> ( -u 1 < T /\ T < 1 ) ) |
| 131 | 130 | simprd | |- ( ph -> T < 1 ) |
| 132 | 18 131 | gtned | |- ( ph -> 1 =/= T ) |
| 133 | 35 19 132 | subne0d | |- ( ph -> ( 1 - T ) =/= 0 ) |
| 134 | 128 133 | logcld | |- ( ph -> ( log ` ( 1 - T ) ) e. CC ) |
| 135 | 127 134 | negsubd | |- ( ph -> ( ( log ` ( 1 + T ) ) + -u ( log ` ( 1 - T ) ) ) = ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) |
| 136 | 122 135 | breqtrd | |- ( ph -> seq 1 ( + , F ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) |
| 137 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 138 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 139 | 2nn0 | |- 2 e. NN0 |
|
| 140 | 139 | a1i | |- ( j e. NN0 -> 2 e. NN0 ) |
| 141 | id | |- ( j e. NN0 -> j e. NN0 ) |
|
| 142 | 140 141 | nn0mulcld | |- ( j e. NN0 -> ( 2 x. j ) e. NN0 ) |
| 143 | nn0p1nn | |- ( ( 2 x. j ) e. NN0 -> ( ( 2 x. j ) + 1 ) e. NN ) |
|
| 144 | 142 143 | syl | |- ( j e. NN0 -> ( ( 2 x. j ) + 1 ) e. NN ) |
| 145 | 5 144 | fmpti | |- G : NN0 --> NN |
| 146 | 145 | a1i | |- ( ph -> G : NN0 --> NN ) |
| 147 | 2re | |- 2 e. RR |
|
| 148 | 147 | a1i | |- ( k e. NN0 -> 2 e. RR ) |
| 149 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 150 | 148 149 | remulcld | |- ( k e. NN0 -> ( 2 x. k ) e. RR ) |
| 151 | 1red | |- ( k e. NN0 -> 1 e. RR ) |
|
| 152 | 149 151 | readdcld | |- ( k e. NN0 -> ( k + 1 ) e. RR ) |
| 153 | 148 152 | remulcld | |- ( k e. NN0 -> ( 2 x. ( k + 1 ) ) e. RR ) |
| 154 | 2rp | |- 2 e. RR+ |
|
| 155 | 154 | a1i | |- ( k e. NN0 -> 2 e. RR+ ) |
| 156 | 149 | ltp1d | |- ( k e. NN0 -> k < ( k + 1 ) ) |
| 157 | 149 152 155 156 | ltmul2dd | |- ( k e. NN0 -> ( 2 x. k ) < ( 2 x. ( k + 1 ) ) ) |
| 158 | 150 153 151 157 | ltadd1dd | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) < ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 159 | 5 | a1i | |- ( k e. NN0 -> G = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) ) |
| 160 | simpr | |- ( ( k e. NN0 /\ j = k ) -> j = k ) |
|
| 161 | 160 | oveq2d | |- ( ( k e. NN0 /\ j = k ) -> ( 2 x. j ) = ( 2 x. k ) ) |
| 162 | 161 | oveq1d | |- ( ( k e. NN0 /\ j = k ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 163 | id | |- ( k e. NN0 -> k e. NN0 ) |
|
| 164 | 2cnd | |- ( k e. NN0 -> 2 e. CC ) |
|
| 165 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 166 | 164 165 | mulcld | |- ( k e. NN0 -> ( 2 x. k ) e. CC ) |
| 167 | 1cnd | |- ( k e. NN0 -> 1 e. CC ) |
|
| 168 | 166 167 | addcld | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 169 | 159 162 163 168 | fvmptd | |- ( k e. NN0 -> ( G ` k ) = ( ( 2 x. k ) + 1 ) ) |
| 170 | simpr | |- ( ( k e. NN0 /\ j = ( k + 1 ) ) -> j = ( k + 1 ) ) |
|
| 171 | 170 | oveq2d | |- ( ( k e. NN0 /\ j = ( k + 1 ) ) -> ( 2 x. j ) = ( 2 x. ( k + 1 ) ) ) |
| 172 | 171 | oveq1d | |- ( ( k e. NN0 /\ j = ( k + 1 ) ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 173 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 174 | 165 167 | addcld | |- ( k e. NN0 -> ( k + 1 ) e. CC ) |
| 175 | 164 174 | mulcld | |- ( k e. NN0 -> ( 2 x. ( k + 1 ) ) e. CC ) |
| 176 | 175 167 | addcld | |- ( k e. NN0 -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. CC ) |
| 177 | 159 172 173 176 | fvmptd | |- ( k e. NN0 -> ( G ` ( k + 1 ) ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 178 | 158 169 177 | 3brtr4d | |- ( k e. NN0 -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
| 179 | 178 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
| 180 | eldifi | |- ( n e. ( NN \ ran G ) -> n e. NN ) |
|
| 181 | 180 | adantl | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> n e. NN ) |
| 182 | 1cnd | |- ( n e. ( NN \ ran G ) -> 1 e. CC ) |
|
| 183 | 182 | negcld | |- ( n e. ( NN \ ran G ) -> -u 1 e. CC ) |
| 184 | 180 83 | syl | |- ( n e. ( NN \ ran G ) -> ( n - 1 ) e. NN0 ) |
| 185 | 183 184 | expcld | |- ( n e. ( NN \ ran G ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
| 186 | 185 | adantl | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
| 187 | 19 | adantr | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> T e. CC ) |
| 188 | 181 | nnnn0d | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> n e. NN0 ) |
| 189 | 187 188 | expcld | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( T ^ n ) e. CC ) |
| 190 | 181 | nncnd | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> n e. CC ) |
| 191 | 181 | nnne0d | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> n =/= 0 ) |
| 192 | 189 190 191 | divcld | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( T ^ n ) / n ) e. CC ) |
| 193 | 186 192 | mulcld | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) e. CC ) |
| 194 | 193 192 | addcld | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) e. CC ) |
| 195 | 3 102 181 194 | fvmptd3 | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( F ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) |
| 196 | eldifn | |- ( n e. ( NN \ ran G ) -> -. n e. ran G ) |
|
| 197 | 0nn0 | |- 0 e. NN0 |
|
| 198 | 1nn0 | |- 1 e. NN0 |
|
| 199 | 139 198 | num0h | |- 1 = ( ( 2 x. 0 ) + 1 ) |
| 200 | oveq2 | |- ( j = 0 -> ( 2 x. j ) = ( 2 x. 0 ) ) |
|
| 201 | 200 | oveq1d | |- ( j = 0 -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. 0 ) + 1 ) ) |
| 202 | 201 | eqeq2d | |- ( j = 0 -> ( 1 = ( ( 2 x. j ) + 1 ) <-> 1 = ( ( 2 x. 0 ) + 1 ) ) ) |
| 203 | 202 | rspcev | |- ( ( 0 e. NN0 /\ 1 = ( ( 2 x. 0 ) + 1 ) ) -> E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) ) |
| 204 | 197 199 203 | mp2an | |- E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) |
| 205 | ax-1cn | |- 1 e. CC |
|
| 206 | 5 | elrnmpt | |- ( 1 e. CC -> ( 1 e. ran G <-> E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) ) ) |
| 207 | 205 206 | ax-mp | |- ( 1 e. ran G <-> E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) ) |
| 208 | 204 207 | mpbir | |- 1 e. ran G |
| 209 | 208 | a1i | |- ( n = 1 -> 1 e. ran G ) |
| 210 | eleq1 | |- ( n = 1 -> ( n e. ran G <-> 1 e. ran G ) ) |
|
| 211 | 209 210 | mpbird | |- ( n = 1 -> n e. ran G ) |
| 212 | 196 211 | nsyl | |- ( n e. ( NN \ ran G ) -> -. n = 1 ) |
| 213 | nn1m1nn | |- ( n e. NN -> ( n = 1 \/ ( n - 1 ) e. NN ) ) |
|
| 214 | 180 213 | syl | |- ( n e. ( NN \ ran G ) -> ( n = 1 \/ ( n - 1 ) e. NN ) ) |
| 215 | 214 | ord | |- ( n e. ( NN \ ran G ) -> ( -. n = 1 -> ( n - 1 ) e. NN ) ) |
| 216 | 212 215 | mpd | |- ( n e. ( NN \ ran G ) -> ( n - 1 ) e. NN ) |
| 217 | nfcv | |- F/_ j NN |
|
| 218 | nfmpt1 | |- F/_ j ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) |
|
| 219 | 5 218 | nfcxfr | |- F/_ j G |
| 220 | 219 | nfrn | |- F/_ j ran G |
| 221 | 217 220 | nfdif | |- F/_ j ( NN \ ran G ) |
| 222 | 221 | nfcri | |- F/ j n e. ( NN \ ran G ) |
| 223 | 5 | elrnmpt | |- ( n e. ( NN \ ran G ) -> ( n e. ran G <-> E. j e. NN0 n = ( ( 2 x. j ) + 1 ) ) ) |
| 224 | 196 223 | mtbid | |- ( n e. ( NN \ ran G ) -> -. E. j e. NN0 n = ( ( 2 x. j ) + 1 ) ) |
| 225 | ralnex | |- ( A. j e. NN0 -. n = ( ( 2 x. j ) + 1 ) <-> -. E. j e. NN0 n = ( ( 2 x. j ) + 1 ) ) |
|
| 226 | 224 225 | sylibr | |- ( n e. ( NN \ ran G ) -> A. j e. NN0 -. n = ( ( 2 x. j ) + 1 ) ) |
| 227 | 226 | r19.21bi | |- ( ( n e. ( NN \ ran G ) /\ j e. NN0 ) -> -. n = ( ( 2 x. j ) + 1 ) ) |
| 228 | 227 | neqned | |- ( ( n e. ( NN \ ran G ) /\ j e. NN0 ) -> n =/= ( ( 2 x. j ) + 1 ) ) |
| 229 | 228 | necomd | |- ( ( n e. ( NN \ ran G ) /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= n ) |
| 230 | 229 | adantlr | |- ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= n ) |
| 231 | simplr | |- ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> j e. ZZ ) |
|
| 232 | simpr | |- ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> -. j e. NN0 ) |
|
| 233 | 180 | ad2antrr | |- ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> n e. NN ) |
| 234 | 147 | a1i | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> 2 e. RR ) |
| 235 | simpl | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> j e. ZZ ) |
|
| 236 | 235 | zred | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> j e. RR ) |
| 237 | 234 236 | remulcld | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 x. j ) e. RR ) |
| 238 | 0red | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> 0 e. RR ) |
|
| 239 | 1red | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> 1 e. RR ) |
|
| 240 | 2cnd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> 2 e. CC ) |
|
| 241 | 236 | recnd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> j e. CC ) |
| 242 | 240 241 | mulcomd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 x. j ) = ( j x. 2 ) ) |
| 243 | simpr | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> -. j e. NN0 ) |
|
| 244 | elnn0z | |- ( j e. NN0 <-> ( j e. ZZ /\ 0 <_ j ) ) |
|
| 245 | 243 244 | sylnib | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> -. ( j e. ZZ /\ 0 <_ j ) ) |
| 246 | nan | |- ( ( ( j e. ZZ /\ -. j e. NN0 ) -> -. ( j e. ZZ /\ 0 <_ j ) ) <-> ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ j e. ZZ ) -> -. 0 <_ j ) ) |
|
| 247 | 245 246 | mpbi | |- ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ j e. ZZ ) -> -. 0 <_ j ) |
| 248 | 247 | anabss1 | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> -. 0 <_ j ) |
| 249 | 236 238 | ltnled | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( j < 0 <-> -. 0 <_ j ) ) |
| 250 | 248 249 | mpbird | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> j < 0 ) |
| 251 | 154 | a1i | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> 2 e. RR+ ) |
| 252 | 251 | rpregt0d | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 253 | mulltgt0 | |- ( ( ( j e. RR /\ j < 0 ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( j x. 2 ) < 0 ) |
|
| 254 | 236 250 252 253 | syl21anc | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( j x. 2 ) < 0 ) |
| 255 | 242 254 | eqbrtrd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 x. j ) < 0 ) |
| 256 | 237 238 239 255 | ltadd1dd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) < ( 0 + 1 ) ) |
| 257 | 1cnd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> 1 e. CC ) |
|
| 258 | 257 | addlidd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 0 + 1 ) = 1 ) |
| 259 | 256 258 | breqtrd | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) < 1 ) |
| 260 | 237 239 | readdcld | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) e. RR ) |
| 261 | 260 239 | ltnled | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( ( 2 x. j ) + 1 ) < 1 <-> -. 1 <_ ( ( 2 x. j ) + 1 ) ) ) |
| 262 | 259 261 | mpbid | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> -. 1 <_ ( ( 2 x. j ) + 1 ) ) |
| 263 | nnge1 | |- ( ( ( 2 x. j ) + 1 ) e. NN -> 1 <_ ( ( 2 x. j ) + 1 ) ) |
|
| 264 | 262 263 | nsyl | |- ( ( j e. ZZ /\ -. j e. NN0 ) -> -. ( ( 2 x. j ) + 1 ) e. NN ) |
| 265 | 264 | adantr | |- ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) -> -. ( ( 2 x. j ) + 1 ) e. NN ) |
| 266 | simpr | |- ( ( n e. NN /\ ( ( 2 x. j ) + 1 ) = n ) -> ( ( 2 x. j ) + 1 ) = n ) |
|
| 267 | simpl | |- ( ( n e. NN /\ ( ( 2 x. j ) + 1 ) = n ) -> n e. NN ) |
|
| 268 | 266 267 | eqeltrd | |- ( ( n e. NN /\ ( ( 2 x. j ) + 1 ) = n ) -> ( ( 2 x. j ) + 1 ) e. NN ) |
| 269 | 268 | adantll | |- ( ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) /\ ( ( 2 x. j ) + 1 ) = n ) -> ( ( 2 x. j ) + 1 ) e. NN ) |
| 270 | 265 269 | mtand | |- ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) -> -. ( ( 2 x. j ) + 1 ) = n ) |
| 271 | 270 | neqned | |- ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) -> ( ( 2 x. j ) + 1 ) =/= n ) |
| 272 | 231 232 233 271 | syl21anc | |- ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= n ) |
| 273 | 230 272 | pm2.61dan | |- ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) -> ( ( 2 x. j ) + 1 ) =/= n ) |
| 274 | 273 | neneqd | |- ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) -> -. ( ( 2 x. j ) + 1 ) = n ) |
| 275 | 274 | ex | |- ( n e. ( NN \ ran G ) -> ( j e. ZZ -> -. ( ( 2 x. j ) + 1 ) = n ) ) |
| 276 | 222 275 | ralrimi | |- ( n e. ( NN \ ran G ) -> A. j e. ZZ -. ( ( 2 x. j ) + 1 ) = n ) |
| 277 | ralnex | |- ( A. j e. ZZ -. ( ( 2 x. j ) + 1 ) = n <-> -. E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) |
|
| 278 | 276 277 | sylib | |- ( n e. ( NN \ ran G ) -> -. E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) |
| 279 | 180 | nnzd | |- ( n e. ( NN \ ran G ) -> n e. ZZ ) |
| 280 | odd2np1 | |- ( n e. ZZ -> ( -. 2 || n <-> E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) ) |
|
| 281 | 279 280 | syl | |- ( n e. ( NN \ ran G ) -> ( -. 2 || n <-> E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) ) |
| 282 | 278 281 | mtbird | |- ( n e. ( NN \ ran G ) -> -. -. 2 || n ) |
| 283 | 282 | notnotrd | |- ( n e. ( NN \ ran G ) -> 2 || n ) |
| 284 | 180 | nncnd | |- ( n e. ( NN \ ran G ) -> n e. CC ) |
| 285 | 284 182 | npcand | |- ( n e. ( NN \ ran G ) -> ( ( n - 1 ) + 1 ) = n ) |
| 286 | 283 285 | breqtrrd | |- ( n e. ( NN \ ran G ) -> 2 || ( ( n - 1 ) + 1 ) ) |
| 287 | 184 | nn0zd | |- ( n e. ( NN \ ran G ) -> ( n - 1 ) e. ZZ ) |
| 288 | oddp1even | |- ( ( n - 1 ) e. ZZ -> ( -. 2 || ( n - 1 ) <-> 2 || ( ( n - 1 ) + 1 ) ) ) |
|
| 289 | 287 288 | syl | |- ( n e. ( NN \ ran G ) -> ( -. 2 || ( n - 1 ) <-> 2 || ( ( n - 1 ) + 1 ) ) ) |
| 290 | 286 289 | mpbird | |- ( n e. ( NN \ ran G ) -> -. 2 || ( n - 1 ) ) |
| 291 | oexpneg | |- ( ( 1 e. CC /\ ( n - 1 ) e. NN /\ -. 2 || ( n - 1 ) ) -> ( -u 1 ^ ( n - 1 ) ) = -u ( 1 ^ ( n - 1 ) ) ) |
|
| 292 | 182 216 290 291 | syl3anc | |- ( n e. ( NN \ ran G ) -> ( -u 1 ^ ( n - 1 ) ) = -u ( 1 ^ ( n - 1 ) ) ) |
| 293 | 1exp | |- ( ( n - 1 ) e. ZZ -> ( 1 ^ ( n - 1 ) ) = 1 ) |
|
| 294 | 287 293 | syl | |- ( n e. ( NN \ ran G ) -> ( 1 ^ ( n - 1 ) ) = 1 ) |
| 295 | 294 | negeqd | |- ( n e. ( NN \ ran G ) -> -u ( 1 ^ ( n - 1 ) ) = -u 1 ) |
| 296 | 292 295 | eqtrd | |- ( n e. ( NN \ ran G ) -> ( -u 1 ^ ( n - 1 ) ) = -u 1 ) |
| 297 | 296 | adantl | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u 1 ^ ( n - 1 ) ) = -u 1 ) |
| 298 | 297 | oveq1d | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) = ( -u 1 x. ( ( T ^ n ) / n ) ) ) |
| 299 | 298 | oveq1d | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = ( ( -u 1 x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) |
| 300 | 192 | mulm1d | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u 1 x. ( ( T ^ n ) / n ) ) = -u ( ( T ^ n ) / n ) ) |
| 301 | 300 | oveq1d | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = ( -u ( ( T ^ n ) / n ) + ( ( T ^ n ) / n ) ) ) |
| 302 | 192 | negcld | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> -u ( ( T ^ n ) / n ) e. CC ) |
| 303 | 302 192 | addcomd | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u ( ( T ^ n ) / n ) + ( ( T ^ n ) / n ) ) = ( ( ( T ^ n ) / n ) + -u ( ( T ^ n ) / n ) ) ) |
| 304 | 192 | negidd | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( ( T ^ n ) / n ) + -u ( ( T ^ n ) / n ) ) = 0 ) |
| 305 | 301 303 304 | 3eqtrd | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = 0 ) |
| 306 | 195 299 305 | 3eqtrd | |- ( ( ph /\ n e. ( NN \ ran G ) ) -> ( F ` n ) = 0 ) |
| 307 | 113 112 | eqeltrd | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. CC ) |
| 308 | 3 | a1i | |- ( ( ph /\ k e. NN0 ) -> F = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) ) ) |
| 309 | simpr | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> j = ( ( 2 x. k ) + 1 ) ) |
|
| 310 | 309 | oveq1d | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( j - 1 ) = ( ( ( 2 x. k ) + 1 ) - 1 ) ) |
| 311 | 310 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( -u 1 ^ ( j - 1 ) ) = ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) ) |
| 312 | 309 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( T ^ j ) = ( T ^ ( ( 2 x. k ) + 1 ) ) ) |
| 313 | 312 309 | oveq12d | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( ( T ^ j ) / j ) = ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 314 | 311 313 | oveq12d | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) = ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 315 | 314 313 | oveq12d | |- ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) = ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 316 | 139 | a1i | |- ( ( ph /\ k e. NN0 ) -> 2 e. NN0 ) |
| 317 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
| 318 | 316 317 | nn0mulcld | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
| 319 | nn0p1nn | |- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
|
| 320 | 318 319 | syl | |- ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 321 | 167 | negcld | |- ( k e. NN0 -> -u 1 e. CC ) |
| 322 | 166 167 | pncand | |- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
| 323 | 139 | a1i | |- ( k e. NN0 -> 2 e. NN0 ) |
| 324 | 323 163 | nn0mulcld | |- ( k e. NN0 -> ( 2 x. k ) e. NN0 ) |
| 325 | 322 324 | eqeltrd | |- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) - 1 ) e. NN0 ) |
| 326 | 321 325 | expcld | |- ( k e. NN0 -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) e. CC ) |
| 327 | 326 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) e. CC ) |
| 328 | 19 | adantr | |- ( ( ph /\ k e. NN0 ) -> T e. CC ) |
| 329 | 198 | a1i | |- ( ( ph /\ k e. NN0 ) -> 1 e. NN0 ) |
| 330 | 318 329 | nn0addcld | |- ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 331 | 328 330 | expcld | |- ( ( ph /\ k e. NN0 ) -> ( T ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 332 | 2cnd | |- ( ( ph /\ k e. NN0 ) -> 2 e. CC ) |
|
| 333 | 165 | adantl | |- ( ( ph /\ k e. NN0 ) -> k e. CC ) |
| 334 | 332 333 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. CC ) |
| 335 | 1cnd | |- ( ( ph /\ k e. NN0 ) -> 1 e. CC ) |
|
| 336 | 334 335 | addcld | |- ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 337 | 0red | |- ( ( ph /\ k e. NN0 ) -> 0 e. RR ) |
|
| 338 | 147 | a1i | |- ( ( ph /\ k e. NN0 ) -> 2 e. RR ) |
| 339 | 149 | adantl | |- ( ( ph /\ k e. NN0 ) -> k e. RR ) |
| 340 | 338 339 | remulcld | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. RR ) |
| 341 | 1red | |- ( ( ph /\ k e. NN0 ) -> 1 e. RR ) |
|
| 342 | 0le2 | |- 0 <_ 2 |
|
| 343 | 342 | a1i | |- ( ( ph /\ k e. NN0 ) -> 0 <_ 2 ) |
| 344 | 317 | nn0ge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ k ) |
| 345 | 338 339 343 344 | mulge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ ( 2 x. k ) ) |
| 346 | 0lt1 | |- 0 < 1 |
|
| 347 | 346 | a1i | |- ( ( ph /\ k e. NN0 ) -> 0 < 1 ) |
| 348 | 340 341 345 347 | addgegt0d | |- ( ( ph /\ k e. NN0 ) -> 0 < ( ( 2 x. k ) + 1 ) ) |
| 349 | 337 348 | gtned | |- ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
| 350 | 331 336 349 | divcld | |- ( ( ph /\ k e. NN0 ) -> ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 351 | 327 350 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
| 352 | 351 350 | addcld | |- ( ( ph /\ k e. NN0 ) -> ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
| 353 | 308 315 320 352 | fvmptd | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( ( 2 x. k ) + 1 ) ) = ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 354 | 322 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
| 355 | 354 | oveq2d | |- ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) = ( -u 1 ^ ( 2 x. k ) ) ) |
| 356 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 357 | m1expeven | |- ( k e. ZZ -> ( -u 1 ^ ( 2 x. k ) ) = 1 ) |
|
| 358 | 356 357 | syl | |- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = 1 ) |
| 359 | 358 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( 2 x. k ) ) = 1 ) |
| 360 | 355 359 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) = 1 ) |
| 361 | 360 | oveq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( 1 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 362 | 350 | mullidd | |- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 363 | 361 362 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 364 | 363 | oveq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 365 | 350 | 2timesd | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 366 | 331 336 349 | divrec2d | |- ( ( ph /\ k e. NN0 ) -> ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 367 | 366 | oveq2d | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 368 | 364 365 367 | 3eqtr2d | |- ( ( ph /\ k e. NN0 ) -> ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 369 | 353 368 | eqtr2d | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( F ` ( ( 2 x. k ) + 1 ) ) ) |
| 370 | 4 | a1i | |- ( ( ph /\ k e. NN0 ) -> H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) ) ) |
| 371 | simpr | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> j = k ) |
|
| 372 | 371 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( 2 x. j ) = ( 2 x. k ) ) |
| 373 | 372 | oveq1d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 374 | 373 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 375 | 373 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( T ^ ( ( 2 x. j ) + 1 ) ) = ( T ^ ( ( 2 x. k ) + 1 ) ) ) |
| 376 | 374 375 | oveq12d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 377 | 376 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 378 | 336 349 | reccld | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 379 | 378 331 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
| 380 | 332 379 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) e. CC ) |
| 381 | 370 377 317 380 | fvmptd | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 382 | 198 | a1i | |- ( k e. NN0 -> 1 e. NN0 ) |
| 383 | 324 382 | nn0addcld | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 384 | 159 162 163 383 | fvmptd | |- ( k e. NN0 -> ( G ` k ) = ( ( 2 x. k ) + 1 ) ) |
| 385 | 384 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( 2 x. k ) + 1 ) ) |
| 386 | 385 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( G ` k ) ) = ( F ` ( ( 2 x. k ) + 1 ) ) ) |
| 387 | 369 381 386 | 3eqtr4d | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
| 388 | 137 8 138 9 146 179 306 307 387 | isercoll2 | |- ( ph -> ( seq 0 ( + , H ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) <-> seq 1 ( + , F ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) ) |
| 389 | 136 388 | mpbird | |- ( ph -> seq 0 ( + , H ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) |
| 390 | 55 18 | resubcld | |- ( ph -> ( 1 - T ) e. RR ) |
| 391 | 19 | subidd | |- ( ph -> ( T - T ) = 0 ) |
| 392 | 391 | eqcomd | |- ( ph -> 0 = ( T - T ) ) |
| 393 | 18 55 18 131 | ltsub1dd | |- ( ph -> ( T - T ) < ( 1 - T ) ) |
| 394 | 392 393 | eqbrtrd | |- ( ph -> 0 < ( 1 - T ) ) |
| 395 | 390 394 | elrpd | |- ( ph -> ( 1 - T ) e. RR+ ) |
| 396 | 125 395 | relogdivd | |- ( ph -> ( log ` ( ( 1 + T ) / ( 1 - T ) ) ) = ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) |
| 397 | 389 396 | breqtrrd | |- ( ph -> seq 0 ( + , H ) ~~> ( log ` ( ( 1 + T ) / ( 1 - T ) ) ) ) |