This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If T is between 0 and 1 , then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem5.1 | ⊢ 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) | |
| stirlinglem5.2 | ⊢ 𝐸 = ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) | ||
| stirlinglem5.3 | ⊢ 𝐹 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) | ||
| stirlinglem5.4 | ⊢ 𝐻 = ( 𝑗 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) | ||
| stirlinglem5.5 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) | ||
| stirlinglem5.6 | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) | ||
| stirlinglem5.7 | ⊢ ( 𝜑 → ( abs ‘ 𝑇 ) < 1 ) | ||
| Assertion | stirlinglem5 | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( log ‘ ( ( 1 + 𝑇 ) / ( 1 − 𝑇 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem5.1 | ⊢ 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) | |
| 2 | stirlinglem5.2 | ⊢ 𝐸 = ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) | |
| 3 | stirlinglem5.3 | ⊢ 𝐹 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) | |
| 4 | stirlinglem5.4 | ⊢ 𝐻 = ( 𝑗 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) | |
| 5 | stirlinglem5.5 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) | |
| 6 | stirlinglem5.6 | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) | |
| 7 | stirlinglem5.7 | ⊢ ( 𝜑 → ( abs ‘ 𝑇 ) < 1 ) | |
| 8 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 9 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 10 | 1 | a1i | ⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ) |
| 11 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 12 | 11 | negcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → - 1 ∈ ℂ ) |
| 13 | nnm1nn0 | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
| 15 | 12 14 | expcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( - 1 ↑ ( 𝑗 − 1 ) ) ∈ ℂ ) |
| 16 | nncn | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 18 | 6 | rpred | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 19 | 18 | recnd | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
| 21 | nnnn0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 23 | 20 22 | expcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ↑ 𝑗 ) ∈ ℂ ) |
| 24 | nnne0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ≠ 0 ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ≠ 0 ) |
| 26 | 15 17 23 25 | div32d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( 𝑇 ↑ 𝑗 ) ) = ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) |
| 27 | 11 20 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 1 + 𝑇 ) − 1 ) = 𝑇 ) |
| 28 | 27 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑇 = ( ( 1 + 𝑇 ) − 1 ) ) |
| 29 | 28 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ↑ 𝑗 ) = ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( 𝑇 ↑ 𝑗 ) ) = ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) |
| 31 | 26 30 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) |
| 32 | 31 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) |
| 33 | 10 32 | eqtrd | ⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) |
| 34 | 33 | seqeq3d | ⊢ ( 𝜑 → seq 1 ( + , 𝐷 ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) ) |
| 35 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 36 | 35 19 | addcld | ⊢ ( 𝜑 → ( 1 + 𝑇 ) ∈ ℂ ) |
| 37 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 38 | 37 | cnmetdval | ⊢ ( ( 1 ∈ ℂ ∧ ( 1 + 𝑇 ) ∈ ℂ ) → ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) = ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) ) |
| 39 | 35 36 38 | syl2anc | ⊢ ( 𝜑 → ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) = ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) ) |
| 40 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 41 | 40 | a1i | ⊢ ( 𝜑 → ( 1 − 1 ) = 0 ) |
| 42 | 41 | oveq1d | ⊢ ( 𝜑 → ( ( 1 − 1 ) − 𝑇 ) = ( 0 − 𝑇 ) ) |
| 43 | 35 35 19 | subsub4d | ⊢ ( 𝜑 → ( ( 1 − 1 ) − 𝑇 ) = ( 1 − ( 1 + 𝑇 ) ) ) |
| 44 | df-neg | ⊢ - 𝑇 = ( 0 − 𝑇 ) | |
| 45 | 44 | eqcomi | ⊢ ( 0 − 𝑇 ) = - 𝑇 |
| 46 | 45 | a1i | ⊢ ( 𝜑 → ( 0 − 𝑇 ) = - 𝑇 ) |
| 47 | 42 43 46 | 3eqtr3d | ⊢ ( 𝜑 → ( 1 − ( 1 + 𝑇 ) ) = - 𝑇 ) |
| 48 | 47 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) = ( abs ‘ - 𝑇 ) ) |
| 49 | 19 | absnegd | ⊢ ( 𝜑 → ( abs ‘ - 𝑇 ) = ( abs ‘ 𝑇 ) ) |
| 50 | 49 7 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ - 𝑇 ) < 1 ) |
| 51 | 48 50 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) < 1 ) |
| 52 | 39 51 | eqbrtrd | ⊢ ( 𝜑 → ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) < 1 ) |
| 53 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 54 | 53 | a1i | ⊢ ( 𝜑 → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 55 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 56 | 55 | rexrd | ⊢ ( 𝜑 → 1 ∈ ℝ* ) |
| 57 | elbl2 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 1 ∈ ℂ ∧ ( 1 + 𝑇 ) ∈ ℂ ) ) → ( ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) < 1 ) ) | |
| 58 | 54 56 35 36 57 | syl22anc | ⊢ ( 𝜑 → ( ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) < 1 ) ) |
| 59 | 52 58 | mpbird | ⊢ ( 𝜑 → ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 60 | eqid | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| 61 | 60 | logtayl2 | ⊢ ( ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) ⇝ ( log ‘ ( 1 + 𝑇 ) ) ) |
| 62 | 59 61 | syl | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) ⇝ ( log ‘ ( 1 + 𝑇 ) ) ) |
| 63 | 34 62 | eqbrtrd | ⊢ ( 𝜑 → seq 1 ( + , 𝐷 ) ⇝ ( log ‘ ( 1 + 𝑇 ) ) ) |
| 64 | seqex | ⊢ seq 1 ( + , 𝐹 ) ∈ V | |
| 65 | 64 | a1i | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
| 66 | 2 | a1i | ⊢ ( 𝜑 → 𝐸 = ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) |
| 67 | 66 | seqeq3d | ⊢ ( 𝜑 → seq 1 ( + , 𝐸 ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ) |
| 68 | logtayl | ⊢ ( ( 𝑇 ∈ ℂ ∧ ( abs ‘ 𝑇 ) < 1 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ⇝ - ( log ‘ ( 1 − 𝑇 ) ) ) | |
| 69 | 19 7 68 | syl2anc | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ⇝ - ( log ‘ ( 1 − 𝑇 ) ) ) |
| 70 | 67 69 | eqbrtrd | ⊢ ( 𝜑 → seq 1 ( + , 𝐸 ) ⇝ - ( log ‘ ( 1 − 𝑇 ) ) ) |
| 71 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 72 | 71 8 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 73 | oveq1 | ⊢ ( 𝑗 = 𝑛 → ( 𝑗 − 1 ) = ( 𝑛 − 1 ) ) | |
| 74 | 73 | oveq2d | ⊢ ( 𝑗 = 𝑛 → ( - 1 ↑ ( 𝑗 − 1 ) ) = ( - 1 ↑ ( 𝑛 − 1 ) ) ) |
| 75 | oveq2 | ⊢ ( 𝑗 = 𝑛 → ( 𝑇 ↑ 𝑗 ) = ( 𝑇 ↑ 𝑛 ) ) | |
| 76 | id | ⊢ ( 𝑗 = 𝑛 → 𝑗 = 𝑛 ) | |
| 77 | 75 76 | oveq12d | ⊢ ( 𝑗 = 𝑛 → ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) = ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
| 78 | 74 77 | oveq12d | ⊢ ( 𝑗 = 𝑛 → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 79 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) | |
| 80 | 79 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
| 81 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 82 | 81 | negcld | ⊢ ( 𝑛 ∈ ℕ → - 1 ∈ ℂ ) |
| 83 | nnm1nn0 | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) | |
| 84 | 82 83 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 85 | 80 84 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 86 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑇 ∈ ℂ ) |
| 87 | 80 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ0 ) |
| 88 | 86 87 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
| 89 | 80 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℂ ) |
| 90 | 80 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ≠ 0 ) |
| 91 | 88 89 90 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 92 | 85 91 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 93 | 1 78 80 92 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐷 ‘ 𝑛 ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 94 | 93 92 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 95 | addcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) | |
| 96 | 95 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) |
| 97 | 72 94 96 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐷 ) ‘ 𝑘 ) ∈ ℂ ) |
| 98 | 2 77 80 91 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐸 ‘ 𝑛 ) = ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
| 99 | 98 91 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐸 ‘ 𝑛 ) ∈ ℂ ) |
| 100 | 72 99 96 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐸 ) ‘ 𝑘 ) ∈ ℂ ) |
| 101 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝜑 ) | |
| 102 | 78 77 | oveq12d | ⊢ ( 𝑗 = 𝑛 → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 103 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 104 | 84 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 105 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
| 106 | 103 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 107 | 105 106 | expcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
| 108 | 103 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 109 | 103 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 110 | 107 108 109 | divcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 111 | 104 110 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 112 | 111 110 | addcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 113 | 3 102 103 112 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 114 | 1 78 103 111 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 115 | 114 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( 𝐷 ‘ 𝑛 ) ) |
| 116 | 2 77 103 110 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) = ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
| 117 | 116 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) = ( 𝐸 ‘ 𝑛 ) ) |
| 118 | 115 117 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( ( 𝐷 ‘ 𝑛 ) + ( 𝐸 ‘ 𝑛 ) ) ) |
| 119 | 113 118 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) + ( 𝐸 ‘ 𝑛 ) ) ) |
| 120 | 101 80 119 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) + ( 𝐸 ‘ 𝑛 ) ) ) |
| 121 | 72 94 99 120 | seradd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) = ( ( seq 1 ( + , 𝐷 ) ‘ 𝑘 ) + ( seq 1 ( + , 𝐸 ) ‘ 𝑘 ) ) ) |
| 122 | 8 9 63 65 70 97 100 121 | climadd | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) + - ( log ‘ ( 1 − 𝑇 ) ) ) ) |
| 123 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 124 | 123 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 125 | 124 6 | rpaddcld | ⊢ ( 𝜑 → ( 1 + 𝑇 ) ∈ ℝ+ ) |
| 126 | 125 | rpne0d | ⊢ ( 𝜑 → ( 1 + 𝑇 ) ≠ 0 ) |
| 127 | 36 126 | logcld | ⊢ ( 𝜑 → ( log ‘ ( 1 + 𝑇 ) ) ∈ ℂ ) |
| 128 | 35 19 | subcld | ⊢ ( 𝜑 → ( 1 − 𝑇 ) ∈ ℂ ) |
| 129 | 18 55 | absltd | ⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) < 1 ↔ ( - 1 < 𝑇 ∧ 𝑇 < 1 ) ) ) |
| 130 | 7 129 | mpbid | ⊢ ( 𝜑 → ( - 1 < 𝑇 ∧ 𝑇 < 1 ) ) |
| 131 | 130 | simprd | ⊢ ( 𝜑 → 𝑇 < 1 ) |
| 132 | 18 131 | gtned | ⊢ ( 𝜑 → 1 ≠ 𝑇 ) |
| 133 | 35 19 132 | subne0d | ⊢ ( 𝜑 → ( 1 − 𝑇 ) ≠ 0 ) |
| 134 | 128 133 | logcld | ⊢ ( 𝜑 → ( log ‘ ( 1 − 𝑇 ) ) ∈ ℂ ) |
| 135 | 127 134 | negsubd | ⊢ ( 𝜑 → ( ( log ‘ ( 1 + 𝑇 ) ) + - ( log ‘ ( 1 − 𝑇 ) ) ) = ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
| 136 | 122 135 | breqtrd | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
| 137 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 138 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 139 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 140 | 139 | a1i | ⊢ ( 𝑗 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 141 | id | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℕ0 ) | |
| 142 | 140 141 | nn0mulcld | ⊢ ( 𝑗 ∈ ℕ0 → ( 2 · 𝑗 ) ∈ ℕ0 ) |
| 143 | nn0p1nn | ⊢ ( ( 2 · 𝑗 ) ∈ ℕ0 → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) | |
| 144 | 142 143 | syl | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
| 145 | 5 144 | fmpti | ⊢ 𝐺 : ℕ0 ⟶ ℕ |
| 146 | 145 | a1i | ⊢ ( 𝜑 → 𝐺 : ℕ0 ⟶ ℕ ) |
| 147 | 2re | ⊢ 2 ∈ ℝ | |
| 148 | 147 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℝ ) |
| 149 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 150 | 148 149 | remulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℝ ) |
| 151 | 1red | ⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 152 | 149 151 | readdcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
| 153 | 148 152 | remulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 154 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 155 | 154 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 156 | 149 | ltp1d | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 < ( 𝑘 + 1 ) ) |
| 157 | 149 152 155 156 | ltmul2dd | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) < ( 2 · ( 𝑘 + 1 ) ) ) |
| 158 | 150 153 151 157 | ltadd1dd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) < ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
| 159 | 5 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 𝐺 = ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 160 | simpr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) | |
| 161 | 160 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = 𝑘 ) → ( 2 · 𝑗 ) = ( 2 · 𝑘 ) ) |
| 162 | 161 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = 𝑘 ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 163 | id | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0 ) | |
| 164 | 2cnd | ⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 165 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 166 | 164 165 | mulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℂ ) |
| 167 | 1cnd | ⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 168 | 166 167 | addcld | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 169 | 159 162 163 168 | fvmptd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 170 | simpr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝑗 = ( 𝑘 + 1 ) ) | |
| 171 | 170 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = ( 𝑘 + 1 ) ) → ( 2 · 𝑗 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
| 172 | 171 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = ( 𝑘 + 1 ) ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
| 173 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 174 | 165 167 | addcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
| 175 | 164 174 | mulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 176 | 175 167 | addcld | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ∈ ℂ ) |
| 177 | 159 172 173 176 | fvmptd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ ( 𝑘 + 1 ) ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
| 178 | 158 169 177 | 3brtr4d | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 179 | 178 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 180 | eldifi | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 𝑛 ∈ ℕ ) | |
| 181 | 180 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ∈ ℕ ) |
| 182 | 1cnd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 1 ∈ ℂ ) | |
| 183 | 182 | negcld | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → - 1 ∈ ℂ ) |
| 184 | 180 83 | syl | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 185 | 183 184 | expcld | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 186 | 185 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 187 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑇 ∈ ℂ ) |
| 188 | 181 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ∈ ℕ0 ) |
| 189 | 187 188 | expcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
| 190 | 181 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ∈ ℂ ) |
| 191 | 181 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ≠ 0 ) |
| 192 | 189 190 191 | divcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 193 | 186 192 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 194 | 193 192 | addcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
| 195 | 3 102 181 194 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 196 | eldifn | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ 𝑛 ∈ ran 𝐺 ) | |
| 197 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 198 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 199 | 139 198 | num0h | ⊢ 1 = ( ( 2 · 0 ) + 1 ) |
| 200 | oveq2 | ⊢ ( 𝑗 = 0 → ( 2 · 𝑗 ) = ( 2 · 0 ) ) | |
| 201 | 200 | oveq1d | ⊢ ( 𝑗 = 0 → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 0 ) + 1 ) ) |
| 202 | 201 | eqeq2d | ⊢ ( 𝑗 = 0 → ( 1 = ( ( 2 · 𝑗 ) + 1 ) ↔ 1 = ( ( 2 · 0 ) + 1 ) ) ) |
| 203 | 202 | rspcev | ⊢ ( ( 0 ∈ ℕ0 ∧ 1 = ( ( 2 · 0 ) + 1 ) ) → ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) ) |
| 204 | 197 199 203 | mp2an | ⊢ ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) |
| 205 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 206 | 5 | elrnmpt | ⊢ ( 1 ∈ ℂ → ( 1 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 207 | 205 206 | ax-mp | ⊢ ( 1 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) ) |
| 208 | 204 207 | mpbir | ⊢ 1 ∈ ran 𝐺 |
| 209 | 208 | a1i | ⊢ ( 𝑛 = 1 → 1 ∈ ran 𝐺 ) |
| 210 | eleq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺 ) ) | |
| 211 | 209 210 | mpbird | ⊢ ( 𝑛 = 1 → 𝑛 ∈ ran 𝐺 ) |
| 212 | 196 211 | nsyl | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ 𝑛 = 1 ) |
| 213 | nn1m1nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ℕ ) ) | |
| 214 | 180 213 | syl | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ℕ ) ) |
| 215 | 214 | ord | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ¬ 𝑛 = 1 → ( 𝑛 − 1 ) ∈ ℕ ) ) |
| 216 | 212 215 | mpd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 − 1 ) ∈ ℕ ) |
| 217 | nfcv | ⊢ Ⅎ 𝑗 ℕ | |
| 218 | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) | |
| 219 | 5 218 | nfcxfr | ⊢ Ⅎ 𝑗 𝐺 |
| 220 | 219 | nfrn | ⊢ Ⅎ 𝑗 ran 𝐺 |
| 221 | 217 220 | nfdif | ⊢ Ⅎ 𝑗 ( ℕ ∖ ran 𝐺 ) |
| 222 | 221 | nfcri | ⊢ Ⅎ 𝑗 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) |
| 223 | 5 | elrnmpt | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ ℕ0 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 224 | 196 223 | mtbid | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ ∃ 𝑗 ∈ ℕ0 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
| 225 | ralnex | ⊢ ( ∀ 𝑗 ∈ ℕ0 ¬ 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ↔ ¬ ∃ 𝑗 ∈ ℕ0 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) | |
| 226 | 224 225 | sylibr | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ∀ 𝑗 ∈ ℕ0 ¬ 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
| 227 | 226 | r19.21bi | ⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℕ0 ) → ¬ 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
| 228 | 227 | neqned | ⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℕ0 ) → 𝑛 ≠ ( ( 2 · 𝑗 ) + 1 ) ) |
| 229 | 228 | necomd | ⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
| 230 | 229 | adantlr | ⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
| 231 | simplr | ⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℤ ) | |
| 232 | simpr | ⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 𝑗 ∈ ℕ0 ) | |
| 233 | 180 | ad2antrr | ⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑛 ∈ ℕ ) |
| 234 | 147 | a1i | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 2 ∈ ℝ ) |
| 235 | simpl | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℤ ) | |
| 236 | 235 | zred | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℝ ) |
| 237 | 234 236 | remulcld | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
| 238 | 0red | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 239 | 1red | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 240 | 2cnd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 2 ∈ ℂ ) | |
| 241 | 236 | recnd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℂ ) |
| 242 | 240 241 | mulcomd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) = ( 𝑗 · 2 ) ) |
| 243 | simpr | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 𝑗 ∈ ℕ0 ) | |
| 244 | elnn0z | ⊢ ( 𝑗 ∈ ℕ0 ↔ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) | |
| 245 | 243 244 | sylnib | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
| 246 | nan | ⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) ↔ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑗 ∈ ℤ ) → ¬ 0 ≤ 𝑗 ) ) | |
| 247 | 245 246 | mpbi | ⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑗 ∈ ℤ ) → ¬ 0 ≤ 𝑗 ) |
| 248 | 247 | anabss1 | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 0 ≤ 𝑗 ) |
| 249 | 236 238 | ltnled | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 𝑗 < 0 ↔ ¬ 0 ≤ 𝑗 ) ) |
| 250 | 248 249 | mpbird | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 < 0 ) |
| 251 | 154 | a1i | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 2 ∈ ℝ+ ) |
| 252 | 251 | rpregt0d | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 253 | mulltgt0 | ⊢ ( ( ( 𝑗 ∈ ℝ ∧ 𝑗 < 0 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝑗 · 2 ) < 0 ) | |
| 254 | 236 250 252 253 | syl21anc | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 𝑗 · 2 ) < 0 ) |
| 255 | 242 254 | eqbrtrd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) < 0 ) |
| 256 | 237 238 239 255 | ltadd1dd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) < ( 0 + 1 ) ) |
| 257 | 1cnd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 258 | 257 | addlidd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 0 + 1 ) = 1 ) |
| 259 | 256 258 | breqtrd | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) < 1 ) |
| 260 | 237 239 | readdcld | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℝ ) |
| 261 | 260 239 | ltnled | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( ( 2 · 𝑗 ) + 1 ) < 1 ↔ ¬ 1 ≤ ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 262 | 259 261 | mpbid | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 1 ≤ ( ( 2 · 𝑗 ) + 1 ) ) |
| 263 | nnge1 | ⊢ ( ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ → 1 ≤ ( ( 2 · 𝑗 ) + 1 ) ) | |
| 264 | 262 263 | nsyl | ⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
| 265 | 264 | adantr | ⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
| 266 | simpr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) | |
| 267 | simpl | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → 𝑛 ∈ ℕ ) | |
| 268 | 266 267 | eqeltrd | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
| 269 | 268 | adantll | ⊢ ( ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
| 270 | 265 269 | mtand | ⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
| 271 | 270 | neqned | ⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
| 272 | 231 232 233 271 | syl21anc | ⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
| 273 | 230 272 | pm2.61dan | ⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
| 274 | 273 | neneqd | ⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) → ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
| 275 | 274 | ex | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑗 ∈ ℤ → ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) ) |
| 276 | 222 275 | ralrimi | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ∀ 𝑗 ∈ ℤ ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
| 277 | ralnex | ⊢ ( ∀ 𝑗 ∈ ℤ ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ↔ ¬ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) | |
| 278 | 276 277 | sylib | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
| 279 | 180 | nnzd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 𝑛 ∈ ℤ ) |
| 280 | odd2np1 | ⊢ ( 𝑛 ∈ ℤ → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) ) | |
| 281 | 279 280 | syl | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) ) |
| 282 | 278 281 | mtbird | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ ¬ 2 ∥ 𝑛 ) |
| 283 | 282 | notnotrd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 2 ∥ 𝑛 ) |
| 284 | 180 | nncnd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 𝑛 ∈ ℂ ) |
| 285 | 284 182 | npcand | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 286 | 283 285 | breqtrrd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 2 ∥ ( ( 𝑛 − 1 ) + 1 ) ) |
| 287 | 184 | nn0zd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 − 1 ) ∈ ℤ ) |
| 288 | oddp1even | ⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( ¬ 2 ∥ ( 𝑛 − 1 ) ↔ 2 ∥ ( ( 𝑛 − 1 ) + 1 ) ) ) | |
| 289 | 287 288 | syl | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ¬ 2 ∥ ( 𝑛 − 1 ) ↔ 2 ∥ ( ( 𝑛 − 1 ) + 1 ) ) ) |
| 290 | 286 289 | mpbird | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ 2 ∥ ( 𝑛 − 1 ) ) |
| 291 | oexpneg | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ ∧ ¬ 2 ∥ ( 𝑛 − 1 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - ( 1 ↑ ( 𝑛 − 1 ) ) ) | |
| 292 | 182 216 290 291 | syl3anc | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - ( 1 ↑ ( 𝑛 − 1 ) ) ) |
| 293 | 1exp | ⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( 1 ↑ ( 𝑛 − 1 ) ) = 1 ) | |
| 294 | 287 293 | syl | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 1 ↑ ( 𝑛 − 1 ) ) = 1 ) |
| 295 | 294 | negeqd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → - ( 1 ↑ ( 𝑛 − 1 ) ) = - 1 ) |
| 296 | 292 295 | eqtrd | ⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - 1 ) |
| 297 | 296 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - 1 ) |
| 298 | 297 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 299 | 298 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 300 | 192 | mulm1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
| 301 | 300 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 302 | 192 | negcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 303 | 302 192 | addcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 304 | 192 | negidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = 0 ) |
| 305 | 301 303 304 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = 0 ) |
| 306 | 195 299 305 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
| 307 | 113 112 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 308 | 3 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ) |
| 309 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) | |
| 310 | 309 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( 𝑗 − 1 ) = ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) |
| 311 | 310 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( - 1 ↑ ( 𝑗 − 1 ) ) = ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) ) |
| 312 | 309 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( 𝑇 ↑ 𝑗 ) = ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 313 | 312 309 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) = ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 314 | 311 313 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 315 | 314 313 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 316 | 139 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
| 317 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 318 | 316 317 | nn0mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 319 | nn0p1nn | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) | |
| 320 | 318 319 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 321 | 167 | negcld | ⊢ ( 𝑘 ∈ ℕ0 → - 1 ∈ ℂ ) |
| 322 | 166 167 | pncand | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
| 323 | 139 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 324 | 323 163 | nn0mulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 325 | 322 324 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ∈ ℕ0 ) |
| 326 | 321 325 | expcld | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) ∈ ℂ ) |
| 327 | 326 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) ∈ ℂ ) |
| 328 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑇 ∈ ℂ ) |
| 329 | 198 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
| 330 | 318 329 | nn0addcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
| 331 | 328 330 | expcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 332 | 2cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℂ ) | |
| 333 | 165 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 334 | 332 333 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 335 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 336 | 334 335 | addcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 337 | 0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 338 | 147 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℝ ) |
| 339 | 149 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 340 | 338 339 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 341 | 1red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 342 | 0le2 | ⊢ 0 ≤ 2 | |
| 343 | 342 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 2 ) |
| 344 | 317 | nn0ge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝑘 ) |
| 345 | 338 339 343 344 | mulge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 2 · 𝑘 ) ) |
| 346 | 0lt1 | ⊢ 0 < 1 | |
| 347 | 346 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 < 1 ) |
| 348 | 340 341 345 347 | addgegt0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ( 2 · 𝑘 ) + 1 ) ) |
| 349 | 337 348 | gtned | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
| 350 | 331 336 349 | divcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 351 | 327 350 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 352 | 351 350 | addcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 353 | 308 315 320 352 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 354 | 322 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
| 355 | 354 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) = ( - 1 ↑ ( 2 · 𝑘 ) ) ) |
| 356 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 357 | m1expeven | ⊢ ( 𝑘 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑘 ) ) = 1 ) | |
| 358 | 356 357 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = 1 ) |
| 359 | 358 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝑘 ) ) = 1 ) |
| 360 | 355 359 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) = 1 ) |
| 361 | 360 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 1 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 362 | 350 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 363 | 361 362 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 364 | 363 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 365 | 350 | 2timesd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 366 | 331 336 349 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 367 | 366 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 368 | 364 365 367 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 369 | 353 368 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 370 | 4 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐻 = ( 𝑗 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) ) |
| 371 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) | |
| 372 | 371 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 2 · 𝑗 ) = ( 2 · 𝑘 ) ) |
| 373 | 372 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 374 | 373 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 375 | 373 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) = ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 376 | 374 375 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 377 | 376 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 378 | 336 349 | reccld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 379 | 378 331 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 380 | 332 379 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ∈ ℂ ) |
| 381 | 370 377 317 380 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 382 | 198 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℕ0 ) |
| 383 | 324 382 | nn0addcld | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
| 384 | 159 162 163 383 | fvmptd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 385 | 384 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 386 | 385 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 387 | 369 381 386 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 388 | 137 8 138 9 146 179 306 307 387 | isercoll2 | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐻 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ↔ seq 1 ( + , 𝐹 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) ) |
| 389 | 136 388 | mpbird | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
| 390 | 55 18 | resubcld | ⊢ ( 𝜑 → ( 1 − 𝑇 ) ∈ ℝ ) |
| 391 | 19 | subidd | ⊢ ( 𝜑 → ( 𝑇 − 𝑇 ) = 0 ) |
| 392 | 391 | eqcomd | ⊢ ( 𝜑 → 0 = ( 𝑇 − 𝑇 ) ) |
| 393 | 18 55 18 131 | ltsub1dd | ⊢ ( 𝜑 → ( 𝑇 − 𝑇 ) < ( 1 − 𝑇 ) ) |
| 394 | 392 393 | eqbrtrd | ⊢ ( 𝜑 → 0 < ( 1 − 𝑇 ) ) |
| 395 | 390 394 | elrpd | ⊢ ( 𝜑 → ( 1 − 𝑇 ) ∈ ℝ+ ) |
| 396 | 125 395 | relogdivd | ⊢ ( 𝜑 → ( log ‘ ( ( 1 + 𝑇 ) / ( 1 − 𝑇 ) ) ) = ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
| 397 | 389 396 | breqtrrd | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( log ‘ ( ( 1 + 𝑇 ) / ( 1 − 𝑇 ) ) ) ) |