This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seradd.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| seradd.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
||
| seradd.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
||
| seradd.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
||
| Assertion | seradd | |- ( ph -> ( seq M ( + , H ) ` N ) = ( ( seq M ( + , F ) ` N ) + ( seq M ( + , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seradd.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | seradd.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
|
| 3 | seradd.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
|
| 4 | seradd.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
|
| 5 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
| 7 | addcom | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) = ( y + x ) ) |
| 9 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 11 | 6 8 10 1 2 3 4 | seqcaopr | |- ( ph -> ( seq M ( + , H ) ` N ) = ( ( seq M ( + , F ) ` N ) + ( seq M ( + , G ) ` N ) ) ) |