This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logtayl2.s | |- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| Assertion | logtayl2 | |- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ) ~~> ( log ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logtayl2.s | |- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1zzd | |- ( A e. S -> 1 e. ZZ ) |
|
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | 4 | a1i | |- ( A e. S -> -u 1 e. CC ) |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | 1 | eleq2i | |- ( A e. S <-> A e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 8 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 9 | 1xr | |- 1 e. RR* |
|
| 10 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( A e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( A e. CC /\ ( 1 ( abs o. - ) A ) < 1 ) ) ) |
|
| 11 | 8 6 9 10 | mp3an | |- ( A e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( A e. CC /\ ( 1 ( abs o. - ) A ) < 1 ) ) |
| 12 | 7 11 | bitri | |- ( A e. S <-> ( A e. CC /\ ( 1 ( abs o. - ) A ) < 1 ) ) |
| 13 | 12 | simplbi | |- ( A e. S -> A e. CC ) |
| 14 | subcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
|
| 15 | 6 13 14 | sylancr | |- ( A e. S -> ( 1 - A ) e. CC ) |
| 16 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 17 | 16 | cnmetdval | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 ( abs o. - ) A ) = ( abs ` ( 1 - A ) ) ) |
| 18 | 6 13 17 | sylancr | |- ( A e. S -> ( 1 ( abs o. - ) A ) = ( abs ` ( 1 - A ) ) ) |
| 19 | 12 | simprbi | |- ( A e. S -> ( 1 ( abs o. - ) A ) < 1 ) |
| 20 | 18 19 | eqbrtrrd | |- ( A e. S -> ( abs ` ( 1 - A ) ) < 1 ) |
| 21 | logtayl | |- ( ( ( 1 - A ) e. CC /\ ( abs ` ( 1 - A ) ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - ( 1 - A ) ) ) ) |
|
| 22 | 15 20 21 | syl2anc | |- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - ( 1 - A ) ) ) ) |
| 23 | nncan | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - ( 1 - A ) ) = A ) |
|
| 24 | 6 13 23 | sylancr | |- ( A e. S -> ( 1 - ( 1 - A ) ) = A ) |
| 25 | 24 | fveq2d | |- ( A e. S -> ( log ` ( 1 - ( 1 - A ) ) ) = ( log ` A ) ) |
| 26 | 25 | negeqd | |- ( A e. S -> -u ( log ` ( 1 - ( 1 - A ) ) ) = -u ( log ` A ) ) |
| 27 | 22 26 | breqtrd | |- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ) ~~> -u ( log ` A ) ) |
| 28 | oveq2 | |- ( k = n -> ( ( 1 - A ) ^ k ) = ( ( 1 - A ) ^ n ) ) |
|
| 29 | id | |- ( k = n -> k = n ) |
|
| 30 | 28 29 | oveq12d | |- ( k = n -> ( ( ( 1 - A ) ^ k ) / k ) = ( ( ( 1 - A ) ^ n ) / n ) ) |
| 31 | eqid | |- ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) = ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) |
|
| 32 | ovex | |- ( ( ( 1 - A ) ^ n ) / n ) e. _V |
|
| 33 | 30 31 32 | fvmpt | |- ( n e. NN -> ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) = ( ( ( 1 - A ) ^ n ) / n ) ) |
| 34 | 33 | adantl | |- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) = ( ( ( 1 - A ) ^ n ) / n ) ) |
| 35 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 36 | expcl | |- ( ( ( 1 - A ) e. CC /\ n e. NN0 ) -> ( ( 1 - A ) ^ n ) e. CC ) |
|
| 37 | 15 35 36 | syl2an | |- ( ( A e. S /\ n e. NN ) -> ( ( 1 - A ) ^ n ) e. CC ) |
| 38 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 39 | 38 | adantl | |- ( ( A e. S /\ n e. NN ) -> n e. CC ) |
| 40 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 41 | 40 | adantl | |- ( ( A e. S /\ n e. NN ) -> n =/= 0 ) |
| 42 | 37 39 41 | divcld | |- ( ( A e. S /\ n e. NN ) -> ( ( ( 1 - A ) ^ n ) / n ) e. CC ) |
| 43 | 34 42 | eqeltrd | |- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) e. CC ) |
| 44 | 37 39 41 | divnegd | |- ( ( A e. S /\ n e. NN ) -> -u ( ( ( 1 - A ) ^ n ) / n ) = ( -u ( ( 1 - A ) ^ n ) / n ) ) |
| 45 | 42 | mulm1d | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) = -u ( ( ( 1 - A ) ^ n ) / n ) ) |
| 46 | 35 | adantl | |- ( ( A e. S /\ n e. NN ) -> n e. NN0 ) |
| 47 | expcl | |- ( ( -u 1 e. CC /\ n e. NN0 ) -> ( -u 1 ^ n ) e. CC ) |
|
| 48 | 4 46 47 | sylancr | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ n ) e. CC ) |
| 49 | subcl | |- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
|
| 50 | 13 6 49 | sylancl | |- ( A e. S -> ( A - 1 ) e. CC ) |
| 51 | expcl | |- ( ( ( A - 1 ) e. CC /\ n e. NN0 ) -> ( ( A - 1 ) ^ n ) e. CC ) |
|
| 52 | 50 35 51 | syl2an | |- ( ( A e. S /\ n e. NN ) -> ( ( A - 1 ) ^ n ) e. CC ) |
| 53 | 48 52 | mulneg1d | |- ( ( A e. S /\ n e. NN ) -> ( -u ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) = -u ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 54 | 4 | a1i | |- ( ( A e. S /\ n e. NN ) -> -u 1 e. CC ) |
| 55 | neg1ne0 | |- -u 1 =/= 0 |
|
| 56 | 55 | a1i | |- ( ( A e. S /\ n e. NN ) -> -u 1 =/= 0 ) |
| 57 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 58 | 57 | adantl | |- ( ( A e. S /\ n e. NN ) -> n e. ZZ ) |
| 59 | 54 56 58 | expm1d | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) = ( ( -u 1 ^ n ) / -u 1 ) ) |
| 60 | 6 | a1i | |- ( ( A e. S /\ n e. NN ) -> 1 e. CC ) |
| 61 | ax-1ne0 | |- 1 =/= 0 |
|
| 62 | 61 | a1i | |- ( ( A e. S /\ n e. NN ) -> 1 =/= 0 ) |
| 63 | 48 60 62 | divneg2d | |- ( ( A e. S /\ n e. NN ) -> -u ( ( -u 1 ^ n ) / 1 ) = ( ( -u 1 ^ n ) / -u 1 ) ) |
| 64 | 48 | div1d | |- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 ^ n ) / 1 ) = ( -u 1 ^ n ) ) |
| 65 | 64 | negeqd | |- ( ( A e. S /\ n e. NN ) -> -u ( ( -u 1 ^ n ) / 1 ) = -u ( -u 1 ^ n ) ) |
| 66 | 59 63 65 | 3eqtr2d | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) = -u ( -u 1 ^ n ) ) |
| 67 | 66 | oveq1d | |- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) = ( -u ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 68 | 50 | mulm1d | |- ( A e. S -> ( -u 1 x. ( A - 1 ) ) = -u ( A - 1 ) ) |
| 69 | negsubdi2 | |- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( 1 - A ) ) |
|
| 70 | 13 6 69 | sylancl | |- ( A e. S -> -u ( A - 1 ) = ( 1 - A ) ) |
| 71 | 68 70 | eqtr2d | |- ( A e. S -> ( 1 - A ) = ( -u 1 x. ( A - 1 ) ) ) |
| 72 | 71 | oveq1d | |- ( A e. S -> ( ( 1 - A ) ^ n ) = ( ( -u 1 x. ( A - 1 ) ) ^ n ) ) |
| 73 | 72 | adantr | |- ( ( A e. S /\ n e. NN ) -> ( ( 1 - A ) ^ n ) = ( ( -u 1 x. ( A - 1 ) ) ^ n ) ) |
| 74 | mulexp | |- ( ( -u 1 e. CC /\ ( A - 1 ) e. CC /\ n e. NN0 ) -> ( ( -u 1 x. ( A - 1 ) ) ^ n ) = ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
|
| 75 | 4 50 35 74 | mp3an3an | |- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 x. ( A - 1 ) ) ^ n ) = ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 76 | 73 75 | eqtrd | |- ( ( A e. S /\ n e. NN ) -> ( ( 1 - A ) ^ n ) = ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 77 | 76 | negeqd | |- ( ( A e. S /\ n e. NN ) -> -u ( ( 1 - A ) ^ n ) = -u ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 78 | 53 67 77 | 3eqtr4d | |- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) = -u ( ( 1 - A ) ^ n ) ) |
| 79 | 78 | oveq1d | |- ( ( A e. S /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) / n ) = ( -u ( ( 1 - A ) ^ n ) / n ) ) |
| 80 | 44 45 79 | 3eqtr4d | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) / n ) ) |
| 81 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 82 | 81 | adantl | |- ( ( A e. S /\ n e. NN ) -> ( n - 1 ) e. NN0 ) |
| 83 | expcl | |- ( ( -u 1 e. CC /\ ( n - 1 ) e. NN0 ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
|
| 84 | 4 82 83 | sylancr | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
| 85 | 84 52 39 41 | div23d | |- ( ( A e. S /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) / n ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 86 | 80 85 | eqtr2d | |- ( ( A e. S /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) = ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) ) |
| 87 | oveq1 | |- ( k = n -> ( k - 1 ) = ( n - 1 ) ) |
|
| 88 | 87 | oveq2d | |- ( k = n -> ( -u 1 ^ ( k - 1 ) ) = ( -u 1 ^ ( n - 1 ) ) ) |
| 89 | 88 29 | oveq12d | |- ( k = n -> ( ( -u 1 ^ ( k - 1 ) ) / k ) = ( ( -u 1 ^ ( n - 1 ) ) / n ) ) |
| 90 | oveq2 | |- ( k = n -> ( ( A - 1 ) ^ k ) = ( ( A - 1 ) ^ n ) ) |
|
| 91 | 89 90 | oveq12d | |- ( k = n -> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 92 | eqid | |- ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) = ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) |
|
| 93 | ovex | |- ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) e. _V |
|
| 94 | 91 92 93 | fvmpt | |- ( n e. NN -> ( ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 95 | 94 | adantl | |- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
| 96 | 34 | oveq2d | |- ( ( A e. S /\ n e. NN ) -> ( -u 1 x. ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) ) = ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) ) |
| 97 | 86 95 96 | 3eqtr4d | |- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ` n ) = ( -u 1 x. ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) ) ) |
| 98 | 2 3 5 27 43 97 | isermulc2 | |- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ) ~~> ( -u 1 x. -u ( log ` A ) ) ) |
| 99 | 1 | dvlog2lem | |- S C_ ( CC \ ( -oo (,] 0 ) ) |
| 100 | 99 | sseli | |- ( A e. S -> A e. ( CC \ ( -oo (,] 0 ) ) ) |
| 101 | eqid | |- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
|
| 102 | 101 | logdmn0 | |- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A =/= 0 ) |
| 103 | 100 102 | syl | |- ( A e. S -> A =/= 0 ) |
| 104 | 13 103 | logcld | |- ( A e. S -> ( log ` A ) e. CC ) |
| 105 | 104 | negcld | |- ( A e. S -> -u ( log ` A ) e. CC ) |
| 106 | 105 | mulm1d | |- ( A e. S -> ( -u 1 x. -u ( log ` A ) ) = -u -u ( log ` A ) ) |
| 107 | 104 | negnegd | |- ( A e. S -> -u -u ( log ` A ) = ( log ` A ) ) |
| 108 | 106 107 | eqtrd | |- ( A e. S -> ( -u 1 x. -u ( log ` A ) ) = ( log ` A ) ) |
| 109 | 98 108 | breqtrd | |- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ) ~~> ( log ` A ) ) |