This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn1m1nn | |- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | |- ( x = 1 -> ( x = 1 \/ ( x - 1 ) e. NN ) ) |
|
| 2 | 1cnd | |- ( x = 1 -> 1 e. CC ) |
|
| 3 | 1 2 | 2thd | |- ( x = 1 -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> 1 e. CC ) ) |
| 4 | eqeq1 | |- ( x = y -> ( x = 1 <-> y = 1 ) ) |
|
| 5 | oveq1 | |- ( x = y -> ( x - 1 ) = ( y - 1 ) ) |
|
| 6 | 5 | eleq1d | |- ( x = y -> ( ( x - 1 ) e. NN <-> ( y - 1 ) e. NN ) ) |
| 7 | 4 6 | orbi12d | |- ( x = y -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( y = 1 \/ ( y - 1 ) e. NN ) ) ) |
| 8 | eqeq1 | |- ( x = ( y + 1 ) -> ( x = 1 <-> ( y + 1 ) = 1 ) ) |
|
| 9 | oveq1 | |- ( x = ( y + 1 ) -> ( x - 1 ) = ( ( y + 1 ) - 1 ) ) |
|
| 10 | 9 | eleq1d | |- ( x = ( y + 1 ) -> ( ( x - 1 ) e. NN <-> ( ( y + 1 ) - 1 ) e. NN ) ) |
| 11 | 8 10 | orbi12d | |- ( x = ( y + 1 ) -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) ) |
| 12 | eqeq1 | |- ( x = A -> ( x = 1 <-> A = 1 ) ) |
|
| 13 | oveq1 | |- ( x = A -> ( x - 1 ) = ( A - 1 ) ) |
|
| 14 | 13 | eleq1d | |- ( x = A -> ( ( x - 1 ) e. NN <-> ( A - 1 ) e. NN ) ) |
| 15 | 12 14 | orbi12d | |- ( x = A -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( A = 1 \/ ( A - 1 ) e. NN ) ) ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 18 | pncan | |- ( ( y e. CC /\ 1 e. CC ) -> ( ( y + 1 ) - 1 ) = y ) |
|
| 19 | 17 16 18 | sylancl | |- ( y e. NN -> ( ( y + 1 ) - 1 ) = y ) |
| 20 | id | |- ( y e. NN -> y e. NN ) |
|
| 21 | 19 20 | eqeltrd | |- ( y e. NN -> ( ( y + 1 ) - 1 ) e. NN ) |
| 22 | 21 | olcd | |- ( y e. NN -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) |
| 23 | 22 | a1d | |- ( y e. NN -> ( ( y = 1 \/ ( y - 1 ) e. NN ) -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) ) |
| 24 | 3 7 11 15 16 23 | nnind | |- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |