This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball. (Contributed by NM, 9-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl2 | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> A e. X ) |
|
| 2 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |
|
| 3 | 2 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |
| 4 | 3 | an32s | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ P e. X ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |
| 5 | 4 | adantrr | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |
| 6 | 1 5 | mpbirand | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) ) |