This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn0z | |- ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | elnnz | |- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
|
| 3 | eqcom | |- ( N = 0 <-> 0 = N ) |
|
| 4 | 2 3 | orbi12i | |- ( ( N e. NN \/ N = 0 ) <-> ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) ) |
| 5 | id | |- ( N e. ZZ -> N e. ZZ ) |
|
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | eleq1 | |- ( 0 = N -> ( 0 e. ZZ <-> N e. ZZ ) ) |
|
| 8 | 6 7 | mpbii | |- ( 0 = N -> N e. ZZ ) |
| 9 | 5 8 | jaoi | |- ( ( N e. ZZ \/ 0 = N ) -> N e. ZZ ) |
| 10 | orc | |- ( N e. ZZ -> ( N e. ZZ \/ 0 = N ) ) |
|
| 11 | 9 10 | impbii | |- ( ( N e. ZZ \/ 0 = N ) <-> N e. ZZ ) |
| 12 | 11 | anbi1i | |- ( ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) ) |
| 13 | ordir | |- ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( ( N e. ZZ \/ 0 = N ) /\ ( 0 < N \/ 0 = N ) ) ) |
|
| 14 | 0re | |- 0 e. RR |
|
| 15 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 16 | leloe | |- ( ( 0 e. RR /\ N e. RR ) -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) ) |
|
| 17 | 14 15 16 | sylancr | |- ( N e. ZZ -> ( 0 <_ N <-> ( 0 < N \/ 0 = N ) ) ) |
| 18 | 17 | pm5.32i | |- ( ( N e. ZZ /\ 0 <_ N ) <-> ( N e. ZZ /\ ( 0 < N \/ 0 = N ) ) ) |
| 19 | 12 13 18 | 3bitr4i | |- ( ( ( N e. ZZ /\ 0 < N ) \/ 0 = N ) <-> ( N e. ZZ /\ 0 <_ N ) ) |
| 20 | 1 4 19 | 3bitri | |- ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) |