This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A series that converges to log ( ( N + 1 ) / N ) . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | stirlinglem6.1 | |- H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
|
| Assertion | stirlinglem6 | |- ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( N + 1 ) / N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem6.1 | |- H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
|
| 2 | eqid | |- ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) |
|
| 3 | eqid | |- ( j e. NN |-> ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) = ( j e. NN |-> ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) |
|
| 4 | eqid | |- ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) + ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) + ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) |
|
| 5 | eqid | |- ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) |
|
| 6 | 2re | |- 2 e. RR |
|
| 7 | 6 | a1i | |- ( N e. NN -> 2 e. RR ) |
| 8 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 9 | 7 8 | remulcld | |- ( N e. NN -> ( 2 x. N ) e. RR ) |
| 10 | 0le2 | |- 0 <_ 2 |
|
| 11 | 10 | a1i | |- ( N e. NN -> 0 <_ 2 ) |
| 12 | 0red | |- ( N e. NN -> 0 e. RR ) |
|
| 13 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 14 | 12 8 13 | ltled | |- ( N e. NN -> 0 <_ N ) |
| 15 | 7 8 11 14 | mulge0d | |- ( N e. NN -> 0 <_ ( 2 x. N ) ) |
| 16 | 9 15 | ge0p1rpd | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR+ ) |
| 17 | 16 | rpreccld | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR+ ) |
| 18 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 19 | 18 | renegcld | |- ( N e. NN -> -u 1 e. RR ) |
| 20 | 17 | rpred | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) |
| 21 | neg1lt0 | |- -u 1 < 0 |
|
| 22 | 21 | a1i | |- ( N e. NN -> -u 1 < 0 ) |
| 23 | 17 | rpgt0d | |- ( N e. NN -> 0 < ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 24 | 19 12 20 22 23 | lttrd | |- ( N e. NN -> -u 1 < ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 25 | 1rp | |- 1 e. RR+ |
|
| 26 | 25 | a1i | |- ( N e. NN -> 1 e. RR+ ) |
| 27 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 28 | 27 | div1d | |- ( N e. NN -> ( 1 / 1 ) = 1 ) |
| 29 | 2rp | |- 2 e. RR+ |
|
| 30 | 29 | a1i | |- ( N e. NN -> 2 e. RR+ ) |
| 31 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 32 | 30 31 | rpmulcld | |- ( N e. NN -> ( 2 x. N ) e. RR+ ) |
| 33 | 18 32 | ltaddrp2d | |- ( N e. NN -> 1 < ( ( 2 x. N ) + 1 ) ) |
| 34 | 28 33 | eqbrtrd | |- ( N e. NN -> ( 1 / 1 ) < ( ( 2 x. N ) + 1 ) ) |
| 35 | 26 16 34 | ltrec1d | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) < 1 ) |
| 36 | 20 18 | absltd | |- ( N e. NN -> ( ( abs ` ( 1 / ( ( 2 x. N ) + 1 ) ) ) < 1 <-> ( -u 1 < ( 1 / ( ( 2 x. N ) + 1 ) ) /\ ( 1 / ( ( 2 x. N ) + 1 ) ) < 1 ) ) ) |
| 37 | 24 35 36 | mpbir2and | |- ( N e. NN -> ( abs ` ( 1 / ( ( 2 x. N ) + 1 ) ) ) < 1 ) |
| 38 | 2 3 4 1 5 17 37 | stirlinglem5 | |- ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) ) ) |
| 39 | 2cnd | |- ( N e. NN -> 2 e. CC ) |
|
| 40 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 41 | 39 40 | mulcld | |- ( N e. NN -> ( 2 x. N ) e. CC ) |
| 42 | 41 27 | addcld | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 43 | 9 18 | readdcld | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR ) |
| 44 | 2pos | |- 0 < 2 |
|
| 45 | 44 | a1i | |- ( N e. NN -> 0 < 2 ) |
| 46 | 7 8 45 13 | mulgt0d | |- ( N e. NN -> 0 < ( 2 x. N ) ) |
| 47 | 9 | ltp1d | |- ( N e. NN -> ( 2 x. N ) < ( ( 2 x. N ) + 1 ) ) |
| 48 | 12 9 43 46 47 | lttrd | |- ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) |
| 49 | 48 | gt0ne0d | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 50 | 42 49 | dividd | |- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = 1 ) |
| 51 | 50 | eqcomd | |- ( N e. NN -> 1 = ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) ) |
| 52 | 51 | oveq1d | |- ( N e. NN -> ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 53 | 51 | oveq1d | |- ( N e. NN -> ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 54 | 52 53 | oveq12d | |- ( N e. NN -> ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 55 | 42 27 42 49 | divdird | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 56 | 55 | eqcomd | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) ) |
| 57 | 42 27 42 49 | divsubdird | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 58 | 57 | eqcomd | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) ) |
| 59 | 56 58 | oveq12d | |- ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) ) ) |
| 60 | 41 27 27 | addassd | |- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) ) |
| 61 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 62 | 61 | a1i | |- ( N e. NN -> ( 1 + 1 ) = 2 ) |
| 63 | 62 | oveq2d | |- ( N e. NN -> ( ( 2 x. N ) + ( 1 + 1 ) ) = ( ( 2 x. N ) + 2 ) ) |
| 64 | 39 | mulridd | |- ( N e. NN -> ( 2 x. 1 ) = 2 ) |
| 65 | 64 | eqcomd | |- ( N e. NN -> 2 = ( 2 x. 1 ) ) |
| 66 | 65 | oveq2d | |- ( N e. NN -> ( ( 2 x. N ) + 2 ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) ) |
| 67 | 39 40 27 | adddid | |- ( N e. NN -> ( 2 x. ( N + 1 ) ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) ) |
| 68 | 66 67 | eqtr4d | |- ( N e. NN -> ( ( 2 x. N ) + 2 ) = ( 2 x. ( N + 1 ) ) ) |
| 69 | 60 63 68 | 3eqtrd | |- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( 2 x. ( N + 1 ) ) ) |
| 70 | 69 | oveq1d | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) ) |
| 71 | 41 27 | pncand | |- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) - 1 ) = ( 2 x. N ) ) |
| 72 | 71 | oveq1d | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) |
| 73 | 70 72 | oveq12d | |- ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) ) |
| 74 | 59 73 | eqtrd | |- ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) ) |
| 75 | 40 27 | addcld | |- ( N e. NN -> ( N + 1 ) e. CC ) |
| 76 | 39 75 | mulcld | |- ( N e. NN -> ( 2 x. ( N + 1 ) ) e. CC ) |
| 77 | 46 | gt0ne0d | |- ( N e. NN -> ( 2 x. N ) =/= 0 ) |
| 78 | 76 41 42 77 49 | divcan7d | |- ( N e. NN -> ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) = ( ( 2 x. ( N + 1 ) ) / ( 2 x. N ) ) ) |
| 79 | 45 | gt0ne0d | |- ( N e. NN -> 2 =/= 0 ) |
| 80 | 13 | gt0ne0d | |- ( N e. NN -> N =/= 0 ) |
| 81 | 39 39 75 40 79 80 | divmuldivd | |- ( N e. NN -> ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) = ( ( 2 x. ( N + 1 ) ) / ( 2 x. N ) ) ) |
| 82 | 81 | eqcomd | |- ( N e. NN -> ( ( 2 x. ( N + 1 ) ) / ( 2 x. N ) ) = ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) ) |
| 83 | 39 79 | dividd | |- ( N e. NN -> ( 2 / 2 ) = 1 ) |
| 84 | 83 | oveq1d | |- ( N e. NN -> ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) = ( 1 x. ( ( N + 1 ) / N ) ) ) |
| 85 | 75 40 80 | divcld | |- ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) |
| 86 | 85 | mullidd | |- ( N e. NN -> ( 1 x. ( ( N + 1 ) / N ) ) = ( ( N + 1 ) / N ) ) |
| 87 | 84 86 | eqtrd | |- ( N e. NN -> ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) = ( ( N + 1 ) / N ) ) |
| 88 | 78 82 87 | 3eqtrd | |- ( N e. NN -> ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) = ( ( N + 1 ) / N ) ) |
| 89 | 54 74 88 | 3eqtrd | |- ( N e. NN -> ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( N + 1 ) / N ) ) |
| 90 | 89 | fveq2d | |- ( N e. NN -> ( log ` ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
| 91 | 38 90 | breqtrd | |- ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( N + 1 ) / N ) ) ) |