This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize isercoll so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll2.z | |- Z = ( ZZ>= ` M ) |
|
| isercoll2.w | |- W = ( ZZ>= ` N ) |
||
| isercoll2.m | |- ( ph -> M e. ZZ ) |
||
| isercoll2.n | |- ( ph -> N e. ZZ ) |
||
| isercoll2.g | |- ( ph -> G : Z --> W ) |
||
| isercoll2.i | |- ( ( ph /\ k e. Z ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
||
| isercoll2.0 | |- ( ( ph /\ n e. ( W \ ran G ) ) -> ( F ` n ) = 0 ) |
||
| isercoll2.f | |- ( ( ph /\ n e. W ) -> ( F ` n ) e. CC ) |
||
| isercoll2.h | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
||
| Assertion | isercoll2 | |- ( ph -> ( seq M ( + , H ) ~~> A <-> seq N ( + , F ) ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll2.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | isercoll2.w | |- W = ( ZZ>= ` N ) |
|
| 3 | isercoll2.m | |- ( ph -> M e. ZZ ) |
|
| 4 | isercoll2.n | |- ( ph -> N e. ZZ ) |
|
| 5 | isercoll2.g | |- ( ph -> G : Z --> W ) |
|
| 6 | isercoll2.i | |- ( ( ph /\ k e. Z ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
|
| 7 | isercoll2.0 | |- ( ( ph /\ n e. ( W \ ran G ) ) -> ( F ` n ) = 0 ) |
|
| 8 | isercoll2.f | |- ( ( ph /\ n e. W ) -> ( F ` n ) e. CC ) |
|
| 9 | isercoll2.h | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
|
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | zsubcl | |- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( 1 - M ) e. ZZ ) |
|
| 12 | 10 3 11 | sylancr | |- ( ph -> ( 1 - M ) e. ZZ ) |
| 13 | seqex | |- seq M ( + , H ) e. _V |
|
| 14 | 13 | a1i | |- ( ph -> seq M ( + , H ) e. _V ) |
| 15 | seqex | |- seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) e. _V |
|
| 16 | 15 | a1i | |- ( ph -> seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) e. _V ) |
| 17 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 18 | 17 1 | eleqtrdi | |- ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) |
| 19 | 12 | adantr | |- ( ( ph /\ k e. Z ) -> ( 1 - M ) e. ZZ ) |
| 20 | simpl | |- ( ( ph /\ k e. Z ) -> ph ) |
|
| 21 | elfzuz | |- ( j e. ( M ... k ) -> j e. ( ZZ>= ` M ) ) |
|
| 22 | 21 1 | eleqtrrdi | |- ( j e. ( M ... k ) -> j e. Z ) |
| 23 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 24 | 23 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 25 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 26 | 24 25 | syl | |- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
| 27 | 26 | zcnd | |- ( ( ph /\ j e. Z ) -> j e. CC ) |
| 28 | 3 | zcnd | |- ( ph -> M e. CC ) |
| 29 | 28 | adantr | |- ( ( ph /\ j e. Z ) -> M e. CC ) |
| 30 | 1cnd | |- ( ( ph /\ j e. Z ) -> 1 e. CC ) |
|
| 31 | 27 29 30 | subadd23d | |- ( ( ph /\ j e. Z ) -> ( ( j - M ) + 1 ) = ( j + ( 1 - M ) ) ) |
| 32 | uznn0sub | |- ( j e. ( ZZ>= ` M ) -> ( j - M ) e. NN0 ) |
|
| 33 | 24 32 | syl | |- ( ( ph /\ j e. Z ) -> ( j - M ) e. NN0 ) |
| 34 | nn0p1nn | |- ( ( j - M ) e. NN0 -> ( ( j - M ) + 1 ) e. NN ) |
|
| 35 | 33 34 | syl | |- ( ( ph /\ j e. Z ) -> ( ( j - M ) + 1 ) e. NN ) |
| 36 | 31 35 | eqeltrrd | |- ( ( ph /\ j e. Z ) -> ( j + ( 1 - M ) ) e. NN ) |
| 37 | oveq1 | |- ( x = ( j + ( 1 - M ) ) -> ( x - 1 ) = ( ( j + ( 1 - M ) ) - 1 ) ) |
|
| 38 | 37 | oveq2d | |- ( x = ( j + ( 1 - M ) ) -> ( M + ( x - 1 ) ) = ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) |
| 39 | 38 | fveq2d | |- ( x = ( j + ( 1 - M ) ) -> ( H ` ( M + ( x - 1 ) ) ) = ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) ) |
| 40 | eqid | |- ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) = ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) |
|
| 41 | fvex | |- ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) e. _V |
|
| 42 | 39 40 41 | fvmpt | |- ( ( j + ( 1 - M ) ) e. NN -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) = ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) ) |
| 43 | 36 42 | syl | |- ( ( ph /\ j e. Z ) -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) = ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) ) |
| 44 | 31 | oveq1d | |- ( ( ph /\ j e. Z ) -> ( ( ( j - M ) + 1 ) - 1 ) = ( ( j + ( 1 - M ) ) - 1 ) ) |
| 45 | 33 | nn0cnd | |- ( ( ph /\ j e. Z ) -> ( j - M ) e. CC ) |
| 46 | ax-1cn | |- 1 e. CC |
|
| 47 | pncan | |- ( ( ( j - M ) e. CC /\ 1 e. CC ) -> ( ( ( j - M ) + 1 ) - 1 ) = ( j - M ) ) |
|
| 48 | 45 46 47 | sylancl | |- ( ( ph /\ j e. Z ) -> ( ( ( j - M ) + 1 ) - 1 ) = ( j - M ) ) |
| 49 | 44 48 | eqtr3d | |- ( ( ph /\ j e. Z ) -> ( ( j + ( 1 - M ) ) - 1 ) = ( j - M ) ) |
| 50 | 49 | oveq2d | |- ( ( ph /\ j e. Z ) -> ( M + ( ( j + ( 1 - M ) ) - 1 ) ) = ( M + ( j - M ) ) ) |
| 51 | 29 27 | pncan3d | |- ( ( ph /\ j e. Z ) -> ( M + ( j - M ) ) = j ) |
| 52 | 50 51 | eqtrd | |- ( ( ph /\ j e. Z ) -> ( M + ( ( j + ( 1 - M ) ) - 1 ) ) = j ) |
| 53 | 52 | fveq2d | |- ( ( ph /\ j e. Z ) -> ( H ` ( M + ( ( j + ( 1 - M ) ) - 1 ) ) ) = ( H ` j ) ) |
| 54 | 43 53 | eqtr2d | |- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) ) |
| 55 | 20 22 54 | syl2an | |- ( ( ( ph /\ k e. Z ) /\ j e. ( M ... k ) ) -> ( H ` j ) = ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` ( j + ( 1 - M ) ) ) ) |
| 56 | 18 19 55 | seqshft2 | |- ( ( ph /\ k e. Z ) -> ( seq M ( + , H ) ` k ) = ( seq ( M + ( 1 - M ) ) ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) ) |
| 57 | 28 | adantr | |- ( ( ph /\ k e. Z ) -> M e. CC ) |
| 58 | pncan3 | |- ( ( M e. CC /\ 1 e. CC ) -> ( M + ( 1 - M ) ) = 1 ) |
|
| 59 | 57 46 58 | sylancl | |- ( ( ph /\ k e. Z ) -> ( M + ( 1 - M ) ) = 1 ) |
| 60 | 59 | seqeq1d | |- ( ( ph /\ k e. Z ) -> seq ( M + ( 1 - M ) ) ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) = seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ) |
| 61 | 60 | fveq1d | |- ( ( ph /\ k e. Z ) -> ( seq ( M + ( 1 - M ) ) ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) = ( seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) ) |
| 62 | 56 61 | eqtr2d | |- ( ( ph /\ k e. Z ) -> ( seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ` ( k + ( 1 - M ) ) ) = ( seq M ( + , H ) ` k ) ) |
| 63 | 1 3 12 14 16 62 | climshft2 | |- ( ph -> ( seq M ( + , H ) ~~> A <-> seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ~~> A ) ) |
| 64 | 5 | adantr | |- ( ( ph /\ x e. NN ) -> G : Z --> W ) |
| 65 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 66 | 3 65 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 67 | nnm1nn0 | |- ( x e. NN -> ( x - 1 ) e. NN0 ) |
|
| 68 | uzaddcl | |- ( ( M e. ( ZZ>= ` M ) /\ ( x - 1 ) e. NN0 ) -> ( M + ( x - 1 ) ) e. ( ZZ>= ` M ) ) |
|
| 69 | 66 67 68 | syl2an | |- ( ( ph /\ x e. NN ) -> ( M + ( x - 1 ) ) e. ( ZZ>= ` M ) ) |
| 70 | 69 1 | eleqtrrdi | |- ( ( ph /\ x e. NN ) -> ( M + ( x - 1 ) ) e. Z ) |
| 71 | 64 70 | ffvelcdmd | |- ( ( ph /\ x e. NN ) -> ( G ` ( M + ( x - 1 ) ) ) e. W ) |
| 72 | 71 | fmpttd | |- ( ph -> ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) : NN --> W ) |
| 73 | fveq2 | |- ( k = ( M + ( j - 1 ) ) -> ( G ` k ) = ( G ` ( M + ( j - 1 ) ) ) ) |
|
| 74 | fvoveq1 | |- ( k = ( M + ( j - 1 ) ) -> ( G ` ( k + 1 ) ) = ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) |
|
| 75 | 73 74 | breq12d | |- ( k = ( M + ( j - 1 ) ) -> ( ( G ` k ) < ( G ` ( k + 1 ) ) <-> ( G ` ( M + ( j - 1 ) ) ) < ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) ) |
| 76 | 6 | ralrimiva | |- ( ph -> A. k e. Z ( G ` k ) < ( G ` ( k + 1 ) ) ) |
| 77 | 76 | adantr | |- ( ( ph /\ j e. NN ) -> A. k e. Z ( G ` k ) < ( G ` ( k + 1 ) ) ) |
| 78 | nnm1nn0 | |- ( j e. NN -> ( j - 1 ) e. NN0 ) |
|
| 79 | uzaddcl | |- ( ( M e. ( ZZ>= ` M ) /\ ( j - 1 ) e. NN0 ) -> ( M + ( j - 1 ) ) e. ( ZZ>= ` M ) ) |
|
| 80 | 66 78 79 | syl2an | |- ( ( ph /\ j e. NN ) -> ( M + ( j - 1 ) ) e. ( ZZ>= ` M ) ) |
| 81 | 80 1 | eleqtrrdi | |- ( ( ph /\ j e. NN ) -> ( M + ( j - 1 ) ) e. Z ) |
| 82 | 75 77 81 | rspcdva | |- ( ( ph /\ j e. NN ) -> ( G ` ( M + ( j - 1 ) ) ) < ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) |
| 83 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 84 | 83 | adantl | |- ( ( ph /\ j e. NN ) -> j e. CC ) |
| 85 | 1cnd | |- ( ( ph /\ j e. NN ) -> 1 e. CC ) |
|
| 86 | 84 85 85 | addsubd | |- ( ( ph /\ j e. NN ) -> ( ( j + 1 ) - 1 ) = ( ( j - 1 ) + 1 ) ) |
| 87 | 86 | oveq2d | |- ( ( ph /\ j e. NN ) -> ( M + ( ( j + 1 ) - 1 ) ) = ( M + ( ( j - 1 ) + 1 ) ) ) |
| 88 | 28 | adantr | |- ( ( ph /\ j e. NN ) -> M e. CC ) |
| 89 | 78 | adantl | |- ( ( ph /\ j e. NN ) -> ( j - 1 ) e. NN0 ) |
| 90 | 89 | nn0cnd | |- ( ( ph /\ j e. NN ) -> ( j - 1 ) e. CC ) |
| 91 | 88 90 85 | addassd | |- ( ( ph /\ j e. NN ) -> ( ( M + ( j - 1 ) ) + 1 ) = ( M + ( ( j - 1 ) + 1 ) ) ) |
| 92 | 87 91 | eqtr4d | |- ( ( ph /\ j e. NN ) -> ( M + ( ( j + 1 ) - 1 ) ) = ( ( M + ( j - 1 ) ) + 1 ) ) |
| 93 | 92 | fveq2d | |- ( ( ph /\ j e. NN ) -> ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) = ( G ` ( ( M + ( j - 1 ) ) + 1 ) ) ) |
| 94 | 82 93 | breqtrrd | |- ( ( ph /\ j e. NN ) -> ( G ` ( M + ( j - 1 ) ) ) < ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
| 95 | oveq1 | |- ( x = j -> ( x - 1 ) = ( j - 1 ) ) |
|
| 96 | 95 | oveq2d | |- ( x = j -> ( M + ( x - 1 ) ) = ( M + ( j - 1 ) ) ) |
| 97 | 96 | fveq2d | |- ( x = j -> ( G ` ( M + ( x - 1 ) ) ) = ( G ` ( M + ( j - 1 ) ) ) ) |
| 98 | eqid | |- ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) = ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) |
|
| 99 | fvex | |- ( G ` ( M + ( j - 1 ) ) ) e. _V |
|
| 100 | 97 98 99 | fvmpt | |- ( j e. NN -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) = ( G ` ( M + ( j - 1 ) ) ) ) |
| 101 | 100 | adantl | |- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) = ( G ` ( M + ( j - 1 ) ) ) ) |
| 102 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 103 | 102 | adantl | |- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
| 104 | oveq1 | |- ( x = ( j + 1 ) -> ( x - 1 ) = ( ( j + 1 ) - 1 ) ) |
|
| 105 | 104 | oveq2d | |- ( x = ( j + 1 ) -> ( M + ( x - 1 ) ) = ( M + ( ( j + 1 ) - 1 ) ) ) |
| 106 | 105 | fveq2d | |- ( x = ( j + 1 ) -> ( G ` ( M + ( x - 1 ) ) ) = ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
| 107 | fvex | |- ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) e. _V |
|
| 108 | 106 98 107 | fvmpt | |- ( ( j + 1 ) e. NN -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` ( j + 1 ) ) = ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
| 109 | 103 108 | syl | |- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` ( j + 1 ) ) = ( G ` ( M + ( ( j + 1 ) - 1 ) ) ) ) |
| 110 | 94 101 109 | 3brtr4d | |- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) < ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` ( j + 1 ) ) ) |
| 111 | 5 | ffnd | |- ( ph -> G Fn Z ) |
| 112 | uznn0sub | |- ( k e. ( ZZ>= ` M ) -> ( k - M ) e. NN0 ) |
|
| 113 | 18 112 | syl | |- ( ( ph /\ k e. Z ) -> ( k - M ) e. NN0 ) |
| 114 | nn0p1nn | |- ( ( k - M ) e. NN0 -> ( ( k - M ) + 1 ) e. NN ) |
|
| 115 | 113 114 | syl | |- ( ( ph /\ k e. Z ) -> ( ( k - M ) + 1 ) e. NN ) |
| 116 | 113 | nn0cnd | |- ( ( ph /\ k e. Z ) -> ( k - M ) e. CC ) |
| 117 | pncan | |- ( ( ( k - M ) e. CC /\ 1 e. CC ) -> ( ( ( k - M ) + 1 ) - 1 ) = ( k - M ) ) |
|
| 118 | 116 46 117 | sylancl | |- ( ( ph /\ k e. Z ) -> ( ( ( k - M ) + 1 ) - 1 ) = ( k - M ) ) |
| 119 | 118 | oveq2d | |- ( ( ph /\ k e. Z ) -> ( M + ( ( ( k - M ) + 1 ) - 1 ) ) = ( M + ( k - M ) ) ) |
| 120 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 121 | 120 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 122 | 121 | zcnd | |- ( k e. Z -> k e. CC ) |
| 123 | pncan3 | |- ( ( M e. CC /\ k e. CC ) -> ( M + ( k - M ) ) = k ) |
|
| 124 | 28 122 123 | syl2an | |- ( ( ph /\ k e. Z ) -> ( M + ( k - M ) ) = k ) |
| 125 | 119 124 | eqtr2d | |- ( ( ph /\ k e. Z ) -> k = ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) |
| 126 | 125 | fveq2d | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) ) |
| 127 | oveq1 | |- ( x = ( ( k - M ) + 1 ) -> ( x - 1 ) = ( ( ( k - M ) + 1 ) - 1 ) ) |
|
| 128 | 127 | oveq2d | |- ( x = ( ( k - M ) + 1 ) -> ( M + ( x - 1 ) ) = ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) |
| 129 | 128 | fveq2d | |- ( x = ( ( k - M ) + 1 ) -> ( G ` ( M + ( x - 1 ) ) ) = ( G ` ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) ) |
| 130 | 129 | rspceeqv | |- ( ( ( ( k - M ) + 1 ) e. NN /\ ( G ` k ) = ( G ` ( M + ( ( ( k - M ) + 1 ) - 1 ) ) ) ) -> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) |
| 131 | 115 126 130 | syl2anc | |- ( ( ph /\ k e. Z ) -> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) |
| 132 | fvex | |- ( G ` k ) e. _V |
|
| 133 | 98 | elrnmpt | |- ( ( G ` k ) e. _V -> ( ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) <-> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) ) |
| 134 | 132 133 | ax-mp | |- ( ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) <-> E. x e. NN ( G ` k ) = ( G ` ( M + ( x - 1 ) ) ) ) |
| 135 | 131 134 | sylibr | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
| 136 | 135 | ralrimiva | |- ( ph -> A. k e. Z ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
| 137 | ffnfv | |- ( G : Z --> ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) <-> ( G Fn Z /\ A. k e. Z ( G ` k ) e. ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) ) |
|
| 138 | 111 136 137 | sylanbrc | |- ( ph -> G : Z --> ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
| 139 | 138 | frnd | |- ( ph -> ran G C_ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) |
| 140 | 139 | sscond | |- ( ph -> ( W \ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) C_ ( W \ ran G ) ) |
| 141 | 140 | sselda | |- ( ( ph /\ n e. ( W \ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) ) -> n e. ( W \ ran G ) ) |
| 142 | 141 7 | syldan | |- ( ( ph /\ n e. ( W \ ran ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ) ) -> ( F ` n ) = 0 ) |
| 143 | fveq2 | |- ( k = ( M + ( j - 1 ) ) -> ( H ` k ) = ( H ` ( M + ( j - 1 ) ) ) ) |
|
| 144 | 73 | fveq2d | |- ( k = ( M + ( j - 1 ) ) -> ( F ` ( G ` k ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) |
| 145 | 143 144 | eqeq12d | |- ( k = ( M + ( j - 1 ) ) -> ( ( H ` k ) = ( F ` ( G ` k ) ) <-> ( H ` ( M + ( j - 1 ) ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) ) |
| 146 | 9 | ralrimiva | |- ( ph -> A. k e. Z ( H ` k ) = ( F ` ( G ` k ) ) ) |
| 147 | 146 | adantr | |- ( ( ph /\ j e. NN ) -> A. k e. Z ( H ` k ) = ( F ` ( G ` k ) ) ) |
| 148 | 145 147 81 | rspcdva | |- ( ( ph /\ j e. NN ) -> ( H ` ( M + ( j - 1 ) ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) |
| 149 | 96 | fveq2d | |- ( x = j -> ( H ` ( M + ( x - 1 ) ) ) = ( H ` ( M + ( j - 1 ) ) ) ) |
| 150 | fvex | |- ( H ` ( M + ( j - 1 ) ) ) e. _V |
|
| 151 | 149 40 150 | fvmpt | |- ( j e. NN -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` j ) = ( H ` ( M + ( j - 1 ) ) ) ) |
| 152 | 151 | adantl | |- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` j ) = ( H ` ( M + ( j - 1 ) ) ) ) |
| 153 | 101 | fveq2d | |- ( ( ph /\ j e. NN ) -> ( F ` ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) ) = ( F ` ( G ` ( M + ( j - 1 ) ) ) ) ) |
| 154 | 148 152 153 | 3eqtr4d | |- ( ( ph /\ j e. NN ) -> ( ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ` j ) = ( F ` ( ( x e. NN |-> ( G ` ( M + ( x - 1 ) ) ) ) ` j ) ) ) |
| 155 | 2 4 72 110 142 8 154 | isercoll | |- ( ph -> ( seq 1 ( + , ( x e. NN |-> ( H ` ( M + ( x - 1 ) ) ) ) ) ~~> A <-> seq N ( + , F ) ~~> A ) ) |
| 156 | 63 155 | bitrd | |- ( ph -> ( seq M ( + , H ) ~~> A <-> seq N ( + , F ) ~~> A ) ) |