This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulltgt0 | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> -u A e. RR ) |
| 3 | lt0neg1 | |- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
|
| 4 | 3 | biimpa | |- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
| 5 | 4 | adantr | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u A ) |
| 6 | simpr | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( B e. RR /\ 0 < B ) ) |
|
| 7 | mulgt0 | |- ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) |
|
| 8 | 2 5 6 7 | syl21anc | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) |
| 9 | recn | |- ( A e. RR -> A e. CC ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> A e. CC ) |
| 11 | recn | |- ( B e. RR -> B e. CC ) |
|
| 12 | 11 | ad2antrl | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) |
| 13 | 10 12 | mulneg1d | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( -u A x. B ) = -u ( A x. B ) ) |
| 14 | 8 13 | breqtrd | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u ( A x. B ) ) |
| 15 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 16 | 15 | ad2ant2r | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) e. RR ) |
| 17 | 16 | lt0neg1d | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) |
| 18 | 14 17 | mpbird | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) < 0 ) |