This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expeven | |- ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | 1 | 2timesd | |- ( N e. ZZ -> ( 2 x. N ) = ( N + N ) ) |
| 3 | 2 | oveq2d | |- ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = ( -u 1 ^ ( N + N ) ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | neg1ne0 | |- -u 1 =/= 0 |
|
| 6 | expaddz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( N e. ZZ /\ N e. ZZ ) ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
|
| 7 | 4 5 6 | mpanl12 | |- ( ( N e. ZZ /\ N e. ZZ ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
| 8 | 7 | anidms | |- ( N e. ZZ -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
| 9 | m1expcl2 | |- ( N e. ZZ -> ( -u 1 ^ N ) e. { -u 1 , 1 } ) |
|
| 10 | ovex | |- ( -u 1 ^ N ) e. _V |
|
| 11 | 10 | elpr | |- ( ( -u 1 ^ N ) e. { -u 1 , 1 } <-> ( ( -u 1 ^ N ) = -u 1 \/ ( -u 1 ^ N ) = 1 ) ) |
| 12 | oveq12 | |- ( ( ( -u 1 ^ N ) = -u 1 /\ ( -u 1 ^ N ) = -u 1 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = ( -u 1 x. -u 1 ) ) |
|
| 13 | 12 | anidms | |- ( ( -u 1 ^ N ) = -u 1 -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = ( -u 1 x. -u 1 ) ) |
| 14 | neg1mulneg1e1 | |- ( -u 1 x. -u 1 ) = 1 |
|
| 15 | 13 14 | eqtrdi | |- ( ( -u 1 ^ N ) = -u 1 -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 16 | oveq12 | |- ( ( ( -u 1 ^ N ) = 1 /\ ( -u 1 ^ N ) = 1 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = ( 1 x. 1 ) ) |
|
| 17 | 16 | anidms | |- ( ( -u 1 ^ N ) = 1 -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = ( 1 x. 1 ) ) |
| 18 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 19 | 17 18 | eqtrdi | |- ( ( -u 1 ^ N ) = 1 -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 20 | 15 19 | jaoi | |- ( ( ( -u 1 ^ N ) = -u 1 \/ ( -u 1 ^ N ) = 1 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 21 | 11 20 | sylbi | |- ( ( -u 1 ^ N ) e. { -u 1 , 1 } -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 22 | 9 21 | syl | |- ( N e. ZZ -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 23 | 3 8 22 | 3eqtrd | |- ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |