This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the sum of two converging sequences. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by NM, 24-Sep-2005) (Proof shortened by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| climadd.2 | |- ( ph -> M e. ZZ ) |
||
| climadd.4 | |- ( ph -> F ~~> A ) |
||
| climadd.6 | |- ( ph -> H e. X ) |
||
| climadd.7 | |- ( ph -> G ~~> B ) |
||
| climadd.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| climadd.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| climadd.h | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
||
| Assertion | climadd | |- ( ph -> H ~~> ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climadd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climadd.4 | |- ( ph -> F ~~> A ) |
|
| 4 | climadd.6 | |- ( ph -> H e. X ) |
|
| 5 | climadd.7 | |- ( ph -> G ~~> B ) |
|
| 6 | climadd.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 7 | climadd.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 8 | climadd.h | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
|
| 9 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 10 | 3 9 | syl | |- ( ph -> A e. CC ) |
| 11 | climcl | |- ( G ~~> B -> B e. CC ) |
|
| 12 | 5 11 | syl | |- ( ph -> B e. CC ) |
| 13 | addcl | |- ( ( u e. CC /\ v e. CC ) -> ( u + v ) e. CC ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ ( u e. CC /\ v e. CC ) ) -> ( u + v ) e. CC ) |
| 15 | simpr | |- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
|
| 16 | 10 | adantr | |- ( ( ph /\ x e. RR+ ) -> A e. CC ) |
| 17 | 12 | adantr | |- ( ( ph /\ x e. RR+ ) -> B e. CC ) |
| 18 | addcn2 | |- ( ( x e. RR+ /\ A e. CC /\ B e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u + v ) - ( A + B ) ) ) < x ) ) |
|
| 19 | 15 16 17 18 | syl3anc | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u + v ) - ( A + B ) ) ) < x ) ) |
| 20 | 1 2 10 12 14 3 5 4 19 6 7 8 | climcn2 | |- ( ph -> H ~~> ( A + B ) ) |