This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | |- 2 e. ZZ |
|
| 2 | divides | |- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. k e. ZZ ( k x. 2 ) = N ) ) |
|
| 3 | 1 2 | mpan | |- ( N e. ZZ -> ( 2 || N <-> E. k e. ZZ ( k x. 2 ) = N ) ) |
| 4 | 3 | notbid | |- ( N e. ZZ -> ( -. 2 || N <-> -. E. k e. ZZ ( k x. 2 ) = N ) ) |
| 5 | elznn0 | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
|
| 6 | odd2np1lem | |- ( N e. NN0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
|
| 7 | 6 | adantl | |- ( ( N e. RR /\ N e. NN0 ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
| 8 | peano2z | |- ( x e. ZZ -> ( x + 1 ) e. ZZ ) |
|
| 9 | znegcl | |- ( ( x + 1 ) e. ZZ -> -u ( x + 1 ) e. ZZ ) |
|
| 10 | 8 9 | syl | |- ( x e. ZZ -> -u ( x + 1 ) e. ZZ ) |
| 11 | 10 | ad2antlr | |- ( ( ( N e. RR /\ x e. ZZ ) /\ ( ( 2 x. x ) + 1 ) = -u N ) -> -u ( x + 1 ) e. ZZ ) |
| 12 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 13 | 2cn | |- 2 e. CC |
|
| 14 | mulcl | |- ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) |
|
| 15 | 13 14 | mpan | |- ( x e. CC -> ( 2 x. x ) e. CC ) |
| 16 | peano2cn | |- ( ( 2 x. x ) e. CC -> ( ( 2 x. x ) + 1 ) e. CC ) |
|
| 17 | 15 16 | syl | |- ( x e. CC -> ( ( 2 x. x ) + 1 ) e. CC ) |
| 18 | 12 17 | syl | |- ( x e. ZZ -> ( ( 2 x. x ) + 1 ) e. CC ) |
| 19 | 18 | adantl | |- ( ( N e. RR /\ x e. ZZ ) -> ( ( 2 x. x ) + 1 ) e. CC ) |
| 20 | simpl | |- ( ( N e. RR /\ x e. ZZ ) -> N e. RR ) |
|
| 21 | 20 | recnd | |- ( ( N e. RR /\ x e. ZZ ) -> N e. CC ) |
| 22 | negcon2 | |- ( ( ( ( 2 x. x ) + 1 ) e. CC /\ N e. CC ) -> ( ( ( 2 x. x ) + 1 ) = -u N <-> N = -u ( ( 2 x. x ) + 1 ) ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( N e. RR /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = -u N <-> N = -u ( ( 2 x. x ) + 1 ) ) ) |
| 24 | eqcom | |- ( N = -u ( ( 2 x. x ) + 1 ) <-> -u ( ( 2 x. x ) + 1 ) = N ) |
|
| 25 | 13 12 14 | sylancr | |- ( x e. ZZ -> ( 2 x. x ) e. CC ) |
| 26 | ax-1cn | |- 1 e. CC |
|
| 27 | 13 26 | mulcli | |- ( 2 x. 1 ) e. CC |
| 28 | addsubass | |- ( ( ( 2 x. x ) e. CC /\ ( 2 x. 1 ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) ) |
|
| 29 | 27 26 28 | mp3an23 | |- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) ) |
| 30 | 25 29 | syl | |- ( x e. ZZ -> ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) = ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) ) |
| 31 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 32 | 31 | oveq1i | |- ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 ) |
| 33 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 34 | 32 33 | eqtri | |- ( ( 2 x. 1 ) - 1 ) = 1 |
| 35 | 34 | oveq2i | |- ( ( 2 x. x ) + ( ( 2 x. 1 ) - 1 ) ) = ( ( 2 x. x ) + 1 ) |
| 36 | 30 35 | eqtr2di | |- ( x e. ZZ -> ( ( 2 x. x ) + 1 ) = ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) ) |
| 37 | adddi | |- ( ( 2 e. CC /\ x e. CC /\ 1 e. CC ) -> ( 2 x. ( x + 1 ) ) = ( ( 2 x. x ) + ( 2 x. 1 ) ) ) |
|
| 38 | 13 26 37 | mp3an13 | |- ( x e. CC -> ( 2 x. ( x + 1 ) ) = ( ( 2 x. x ) + ( 2 x. 1 ) ) ) |
| 39 | 12 38 | syl | |- ( x e. ZZ -> ( 2 x. ( x + 1 ) ) = ( ( 2 x. x ) + ( 2 x. 1 ) ) ) |
| 40 | 39 | oveq1d | |- ( x e. ZZ -> ( ( 2 x. ( x + 1 ) ) - 1 ) = ( ( ( 2 x. x ) + ( 2 x. 1 ) ) - 1 ) ) |
| 41 | 36 40 | eqtr4d | |- ( x e. ZZ -> ( ( 2 x. x ) + 1 ) = ( ( 2 x. ( x + 1 ) ) - 1 ) ) |
| 42 | 41 | negeqd | |- ( x e. ZZ -> -u ( ( 2 x. x ) + 1 ) = -u ( ( 2 x. ( x + 1 ) ) - 1 ) ) |
| 43 | 8 | zcnd | |- ( x e. ZZ -> ( x + 1 ) e. CC ) |
| 44 | mulneg2 | |- ( ( 2 e. CC /\ ( x + 1 ) e. CC ) -> ( 2 x. -u ( x + 1 ) ) = -u ( 2 x. ( x + 1 ) ) ) |
|
| 45 | 13 43 44 | sylancr | |- ( x e. ZZ -> ( 2 x. -u ( x + 1 ) ) = -u ( 2 x. ( x + 1 ) ) ) |
| 46 | 45 | oveq1d | |- ( x e. ZZ -> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = ( -u ( 2 x. ( x + 1 ) ) + 1 ) ) |
| 47 | mulcl | |- ( ( 2 e. CC /\ ( x + 1 ) e. CC ) -> ( 2 x. ( x + 1 ) ) e. CC ) |
|
| 48 | 13 43 47 | sylancr | |- ( x e. ZZ -> ( 2 x. ( x + 1 ) ) e. CC ) |
| 49 | negsubdi | |- ( ( ( 2 x. ( x + 1 ) ) e. CC /\ 1 e. CC ) -> -u ( ( 2 x. ( x + 1 ) ) - 1 ) = ( -u ( 2 x. ( x + 1 ) ) + 1 ) ) |
|
| 50 | 48 26 49 | sylancl | |- ( x e. ZZ -> -u ( ( 2 x. ( x + 1 ) ) - 1 ) = ( -u ( 2 x. ( x + 1 ) ) + 1 ) ) |
| 51 | 46 50 | eqtr4d | |- ( x e. ZZ -> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = -u ( ( 2 x. ( x + 1 ) ) - 1 ) ) |
| 52 | 42 51 | eqtr4d | |- ( x e. ZZ -> -u ( ( 2 x. x ) + 1 ) = ( ( 2 x. -u ( x + 1 ) ) + 1 ) ) |
| 53 | 52 | adantl | |- ( ( N e. RR /\ x e. ZZ ) -> -u ( ( 2 x. x ) + 1 ) = ( ( 2 x. -u ( x + 1 ) ) + 1 ) ) |
| 54 | 53 | eqeq1d | |- ( ( N e. RR /\ x e. ZZ ) -> ( -u ( ( 2 x. x ) + 1 ) = N <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
| 55 | 24 54 | bitrid | |- ( ( N e. RR /\ x e. ZZ ) -> ( N = -u ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
| 56 | 23 55 | bitrd | |- ( ( N e. RR /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = -u N <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
| 57 | 56 | biimpa | |- ( ( ( N e. RR /\ x e. ZZ ) /\ ( ( 2 x. x ) + 1 ) = -u N ) -> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) |
| 58 | oveq2 | |- ( n = -u ( x + 1 ) -> ( 2 x. n ) = ( 2 x. -u ( x + 1 ) ) ) |
|
| 59 | 58 | oveq1d | |- ( n = -u ( x + 1 ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. -u ( x + 1 ) ) + 1 ) ) |
| 60 | 59 | eqeq1d | |- ( n = -u ( x + 1 ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) ) |
| 61 | 60 | rspcev | |- ( ( -u ( x + 1 ) e. ZZ /\ ( ( 2 x. -u ( x + 1 ) ) + 1 ) = N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 62 | 11 57 61 | syl2anc | |- ( ( ( N e. RR /\ x e. ZZ ) /\ ( ( 2 x. x ) + 1 ) = -u N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 63 | 62 | rexlimdva2 | |- ( N e. RR -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = -u N -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 64 | znegcl | |- ( y e. ZZ -> -u y e. ZZ ) |
|
| 65 | 64 | ad2antlr | |- ( ( ( N e. RR /\ y e. ZZ ) /\ ( y x. 2 ) = -u N ) -> -u y e. ZZ ) |
| 66 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 67 | mulcl | |- ( ( y e. CC /\ 2 e. CC ) -> ( y x. 2 ) e. CC ) |
|
| 68 | 66 13 67 | sylancl | |- ( y e. ZZ -> ( y x. 2 ) e. CC ) |
| 69 | recn | |- ( N e. RR -> N e. CC ) |
|
| 70 | negcon2 | |- ( ( ( y x. 2 ) e. CC /\ N e. CC ) -> ( ( y x. 2 ) = -u N <-> N = -u ( y x. 2 ) ) ) |
|
| 71 | 68 69 70 | syl2anr | |- ( ( N e. RR /\ y e. ZZ ) -> ( ( y x. 2 ) = -u N <-> N = -u ( y x. 2 ) ) ) |
| 72 | eqcom | |- ( N = -u ( y x. 2 ) <-> -u ( y x. 2 ) = N ) |
|
| 73 | mulneg1 | |- ( ( y e. CC /\ 2 e. CC ) -> ( -u y x. 2 ) = -u ( y x. 2 ) ) |
|
| 74 | 66 13 73 | sylancl | |- ( y e. ZZ -> ( -u y x. 2 ) = -u ( y x. 2 ) ) |
| 75 | 74 | adantl | |- ( ( N e. RR /\ y e. ZZ ) -> ( -u y x. 2 ) = -u ( y x. 2 ) ) |
| 76 | 75 | eqeq1d | |- ( ( N e. RR /\ y e. ZZ ) -> ( ( -u y x. 2 ) = N <-> -u ( y x. 2 ) = N ) ) |
| 77 | 72 76 | bitr4id | |- ( ( N e. RR /\ y e. ZZ ) -> ( N = -u ( y x. 2 ) <-> ( -u y x. 2 ) = N ) ) |
| 78 | 71 77 | bitrd | |- ( ( N e. RR /\ y e. ZZ ) -> ( ( y x. 2 ) = -u N <-> ( -u y x. 2 ) = N ) ) |
| 79 | 78 | biimpa | |- ( ( ( N e. RR /\ y e. ZZ ) /\ ( y x. 2 ) = -u N ) -> ( -u y x. 2 ) = N ) |
| 80 | oveq1 | |- ( k = -u y -> ( k x. 2 ) = ( -u y x. 2 ) ) |
|
| 81 | 80 | eqeq1d | |- ( k = -u y -> ( ( k x. 2 ) = N <-> ( -u y x. 2 ) = N ) ) |
| 82 | 81 | rspcev | |- ( ( -u y e. ZZ /\ ( -u y x. 2 ) = N ) -> E. k e. ZZ ( k x. 2 ) = N ) |
| 83 | 65 79 82 | syl2anc | |- ( ( ( N e. RR /\ y e. ZZ ) /\ ( y x. 2 ) = -u N ) -> E. k e. ZZ ( k x. 2 ) = N ) |
| 84 | 83 | rexlimdva2 | |- ( N e. RR -> ( E. y e. ZZ ( y x. 2 ) = -u N -> E. k e. ZZ ( k x. 2 ) = N ) ) |
| 85 | 63 84 | orim12d | |- ( N e. RR -> ( ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = -u N \/ E. y e. ZZ ( y x. 2 ) = -u N ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) ) |
| 86 | odd2np1lem | |- ( -u N e. NN0 -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = -u N \/ E. y e. ZZ ( y x. 2 ) = -u N ) ) |
|
| 87 | 85 86 | impel | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
| 88 | 7 87 | jaodan | |- ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
| 89 | 5 88 | sylbi | |- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
| 90 | halfnz | |- -. ( 1 / 2 ) e. ZZ |
|
| 91 | reeanv | |- ( E. n e. ZZ E. k e. ZZ ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) ) |
|
| 92 | eqtr3 | |- ( ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) -> ( ( 2 x. n ) + 1 ) = ( k x. 2 ) ) |
|
| 93 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 94 | mulcom | |- ( ( k e. CC /\ 2 e. CC ) -> ( k x. 2 ) = ( 2 x. k ) ) |
|
| 95 | 93 13 94 | sylancl | |- ( k e. ZZ -> ( k x. 2 ) = ( 2 x. k ) ) |
| 96 | 95 | eqeq2d | |- ( k e. ZZ -> ( ( ( 2 x. n ) + 1 ) = ( k x. 2 ) <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
| 97 | 96 | adantl | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = ( k x. 2 ) <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
| 98 | mulcl | |- ( ( 2 e. CC /\ k e. CC ) -> ( 2 x. k ) e. CC ) |
|
| 99 | 13 93 98 | sylancr | |- ( k e. ZZ -> ( 2 x. k ) e. CC ) |
| 100 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 101 | mulcl | |- ( ( 2 e. CC /\ n e. CC ) -> ( 2 x. n ) e. CC ) |
|
| 102 | 13 100 101 | sylancr | |- ( n e. ZZ -> ( 2 x. n ) e. CC ) |
| 103 | subadd | |- ( ( ( 2 x. k ) e. CC /\ ( 2 x. n ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
|
| 104 | 26 103 | mp3an3 | |- ( ( ( 2 x. k ) e. CC /\ ( 2 x. n ) e. CC ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
| 105 | 99 102 104 | syl2anr | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 <-> ( ( 2 x. n ) + 1 ) = ( 2 x. k ) ) ) |
| 106 | subcl | |- ( ( k e. CC /\ n e. CC ) -> ( k - n ) e. CC ) |
|
| 107 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 108 | eqcom | |- ( ( k - n ) = ( 1 / 2 ) <-> ( 1 / 2 ) = ( k - n ) ) |
|
| 109 | divmul | |- ( ( 1 e. CC /\ ( k - n ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 1 / 2 ) = ( k - n ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
|
| 110 | 108 109 | bitrid | |- ( ( 1 e. CC /\ ( k - n ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
| 111 | 26 107 110 | mp3an13 | |- ( ( k - n ) e. CC -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
| 112 | 106 111 | syl | |- ( ( k e. CC /\ n e. CC ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
| 113 | 112 | ancoms | |- ( ( n e. CC /\ k e. CC ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( 2 x. ( k - n ) ) = 1 ) ) |
| 114 | subdi | |- ( ( 2 e. CC /\ k e. CC /\ n e. CC ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
|
| 115 | 13 114 | mp3an1 | |- ( ( k e. CC /\ n e. CC ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
| 116 | 115 | ancoms | |- ( ( n e. CC /\ k e. CC ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
| 117 | 116 | eqeq1d | |- ( ( n e. CC /\ k e. CC ) -> ( ( 2 x. ( k - n ) ) = 1 <-> ( ( 2 x. k ) - ( 2 x. n ) ) = 1 ) ) |
| 118 | 113 117 | bitrd | |- ( ( n e. CC /\ k e. CC ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( ( 2 x. k ) - ( 2 x. n ) ) = 1 ) ) |
| 119 | 100 93 118 | syl2an | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( k - n ) = ( 1 / 2 ) <-> ( ( 2 x. k ) - ( 2 x. n ) ) = 1 ) ) |
| 120 | zsubcl | |- ( ( k e. ZZ /\ n e. ZZ ) -> ( k - n ) e. ZZ ) |
|
| 121 | eleq1 | |- ( ( k - n ) = ( 1 / 2 ) -> ( ( k - n ) e. ZZ <-> ( 1 / 2 ) e. ZZ ) ) |
|
| 122 | 120 121 | syl5ibcom | |- ( ( k e. ZZ /\ n e. ZZ ) -> ( ( k - n ) = ( 1 / 2 ) -> ( 1 / 2 ) e. ZZ ) ) |
| 123 | 122 | ancoms | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( k - n ) = ( 1 / 2 ) -> ( 1 / 2 ) e. ZZ ) ) |
| 124 | 119 123 | sylbird | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. k ) - ( 2 x. n ) ) = 1 -> ( 1 / 2 ) e. ZZ ) ) |
| 125 | 105 124 | sylbird | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = ( 2 x. k ) -> ( 1 / 2 ) e. ZZ ) ) |
| 126 | 97 125 | sylbid | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = ( k x. 2 ) -> ( 1 / 2 ) e. ZZ ) ) |
| 127 | 92 126 | syl5 | |- ( ( n e. ZZ /\ k e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) -> ( 1 / 2 ) e. ZZ ) ) |
| 128 | 127 | rexlimivv | |- ( E. n e. ZZ E. k e. ZZ ( ( ( 2 x. n ) + 1 ) = N /\ ( k x. 2 ) = N ) -> ( 1 / 2 ) e. ZZ ) |
| 129 | 91 128 | sylbir | |- ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) -> ( 1 / 2 ) e. ZZ ) |
| 130 | 90 129 | mto | |- -. ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) |
| 131 | pm5.17 | |- ( ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) /\ -. ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> -. E. k e. ZZ ( k x. 2 ) = N ) ) |
|
| 132 | bicom | |- ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> -. E. k e. ZZ ( k x. 2 ) = N ) <-> ( -. E. k e. ZZ ( k x. 2 ) = N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 133 | 131 132 | bitri | |- ( ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) /\ -. ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N /\ E. k e. ZZ ( k x. 2 ) = N ) ) <-> ( -. E. k e. ZZ ( k x. 2 ) = N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 134 | 89 130 133 | sylanblc | |- ( N e. ZZ -> ( -. E. k e. ZZ ( k x. 2 ) = N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 135 | 4 134 | bitrd | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |