This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oexpneg | |- ( ( A e. CC /\ N e. NN /\ -. 2 || N ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 2 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 4 | 3 | biimpa | |- ( ( N e. NN /\ -. 2 || N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 5 | 4 | 3adant1 | |- ( ( A e. CC /\ N e. NN /\ -. 2 || N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 6 | simpl1 | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A e. CC ) |
|
| 7 | simprr | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
|
| 8 | simpl2 | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> N e. NN ) |
|
| 9 | 8 | nncnd | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> N e. CC ) |
| 10 | 1cnd | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 1 e. CC ) |
|
| 11 | 2z | |- 2 e. ZZ |
|
| 12 | simprl | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. ZZ ) |
|
| 13 | zmulcl | |- ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) |
|
| 14 | 11 12 13 | sylancr | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. ZZ ) |
| 15 | 14 | zcnd | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. CC ) |
| 16 | 9 10 15 | subadd2d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
| 17 | 7 16 | mpbird | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( N - 1 ) = ( 2 x. n ) ) |
| 18 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 19 | 8 18 | syl | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( N - 1 ) e. NN0 ) |
| 20 | 17 19 | eqeltrrd | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. NN0 ) |
| 21 | 6 20 | expcld | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) e. CC ) |
| 22 | 21 6 | mulneg2d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = -u ( ( A ^ ( 2 x. n ) ) x. A ) ) |
| 23 | sqneg | |- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
|
| 24 | 6 23 | syl | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 25 | 24 | oveq1d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ 2 ) ^ n ) = ( ( A ^ 2 ) ^ n ) ) |
| 26 | 6 | negcld | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A e. CC ) |
| 27 | 2rp | |- 2 e. RR+ |
|
| 28 | 27 | a1i | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 2 e. RR+ ) |
| 29 | 12 | zred | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. RR ) |
| 30 | 20 | nn0ge0d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 0 <_ ( 2 x. n ) ) |
| 31 | 28 29 30 | prodge0rd | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 0 <_ n ) |
| 32 | elnn0z | |- ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) |
|
| 33 | 12 31 32 | sylanbrc | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. NN0 ) |
| 34 | 2nn0 | |- 2 e. NN0 |
|
| 35 | 34 | a1i | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 2 e. NN0 ) |
| 36 | 26 33 35 | expmuld | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) |
| 37 | 6 33 35 | expmuld | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) |
| 38 | 25 36 37 | 3eqtr4d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( A ^ ( 2 x. n ) ) ) |
| 39 | 38 | oveq1d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( ( A ^ ( 2 x. n ) ) x. -u A ) ) |
| 40 | 26 20 | expp1d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u A ^ ( 2 x. n ) ) x. -u A ) ) |
| 41 | 7 | oveq2d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( -u A ^ N ) ) |
| 42 | 40 41 | eqtr3d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
| 43 | 39 42 | eqtr3d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
| 44 | 22 43 | eqtr3d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = ( -u A ^ N ) ) |
| 45 | 6 20 | expp1d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( ( A ^ ( 2 x. n ) ) x. A ) ) |
| 46 | 7 | oveq2d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( A ^ N ) ) |
| 47 | 45 46 | eqtr3d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. A ) = ( A ^ N ) ) |
| 48 | 47 | negeqd | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = -u ( A ^ N ) ) |
| 49 | 44 48 | eqtr3d | |- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |
| 50 | 5 49 | rexlimddv | |- ( ( A e. CC /\ N e. NN /\ -. 2 || N ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |