This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in Lang p. 515. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 23-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetralt.d | |- D = ( N maDet R ) |
|
| mdetralt.a | |- A = ( N Mat R ) |
||
| mdetralt.b | |- B = ( Base ` A ) |
||
| mdetralt.z | |- .0. = ( 0g ` R ) |
||
| mdetralt.r | |- ( ph -> R e. CRing ) |
||
| mdetralt.x | |- ( ph -> X e. B ) |
||
| mdetralt.i | |- ( ph -> I e. N ) |
||
| mdetralt.j | |- ( ph -> J e. N ) |
||
| mdetralt.ij | |- ( ph -> I =/= J ) |
||
| mdetralt.eq | |- ( ph -> A. a e. N ( I X a ) = ( J X a ) ) |
||
| Assertion | mdetralt | |- ( ph -> ( D ` X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetralt.d | |- D = ( N maDet R ) |
|
| 2 | mdetralt.a | |- A = ( N Mat R ) |
|
| 3 | mdetralt.b | |- B = ( Base ` A ) |
|
| 4 | mdetralt.z | |- .0. = ( 0g ` R ) |
|
| 5 | mdetralt.r | |- ( ph -> R e. CRing ) |
|
| 6 | mdetralt.x | |- ( ph -> X e. B ) |
|
| 7 | mdetralt.i | |- ( ph -> I e. N ) |
|
| 8 | mdetralt.j | |- ( ph -> J e. N ) |
|
| 9 | mdetralt.ij | |- ( ph -> I =/= J ) |
|
| 10 | mdetralt.eq | |- ( ph -> A. a e. N ( I X a ) = ( J X a ) ) |
|
| 11 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 12 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 13 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 14 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 15 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 16 | 1 2 3 11 12 13 14 15 | mdetleib | |- ( X e. B -> ( D ` X ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
| 17 | 6 16 | syl | |- ( ph -> ( D ` X ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
| 18 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 19 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 20 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 21 | 5 20 | syl | |- ( ph -> R e. Ring ) |
| 22 | ringcmn | |- ( R e. Ring -> R e. CMnd ) |
|
| 23 | 21 22 | syl | |- ( ph -> R e. CMnd ) |
| 24 | 2 3 | matrcl | |- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
| 25 | 6 24 | syl | |- ( ph -> ( N e. Fin /\ R e. _V ) ) |
| 26 | 25 | simpld | |- ( ph -> N e. Fin ) |
| 27 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 28 | 27 11 | symgbasfi | |- ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 29 | 26 28 | syl | |- ( ph -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 30 | 21 | adantr | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) |
| 31 | zrhpsgnmhm | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
|
| 32 | 21 26 31 | syl2anc | |- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 33 | 15 18 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 34 | 11 33 | mhmf | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> ( Base ` R ) ) |
| 35 | 32 34 | syl | |- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> ( Base ` R ) ) |
| 36 | 35 | ffvelcdmda | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. ( Base ` R ) ) |
| 37 | 15 | crngmgp | |- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 38 | 5 37 | syl | |- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 39 | 38 | adantr | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( mulGrp ` R ) e. CMnd ) |
| 40 | 26 | adantr | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> N e. Fin ) |
| 41 | 2 18 3 | matbas2i | |- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 42 | 6 41 | syl | |- ( ph -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 43 | elmapi | |- ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X : ( N X. N ) --> ( Base ` R ) ) |
|
| 44 | 42 43 | syl | |- ( ph -> X : ( N X. N ) --> ( Base ` R ) ) |
| 45 | 44 | ad2antrr | |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> X : ( N X. N ) --> ( Base ` R ) ) |
| 46 | 27 11 | symgbasf1o | |- ( p e. ( Base ` ( SymGrp ` N ) ) -> p : N -1-1-onto-> N ) |
| 47 | 46 | adantl | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N -1-1-onto-> N ) |
| 48 | f1of | |- ( p : N -1-1-onto-> N -> p : N --> N ) |
|
| 49 | 47 48 | syl | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N --> N ) |
| 50 | 49 | ffvelcdmda | |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( p ` c ) e. N ) |
| 51 | simpr | |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> c e. N ) |
|
| 52 | 45 50 51 | fovcdmd | |- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( ( p ` c ) X c ) e. ( Base ` R ) ) |
| 53 | 52 | ralrimiva | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> A. c e. N ( ( p ` c ) X c ) e. ( Base ` R ) ) |
| 54 | 33 39 40 53 | gsummptcl | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
| 55 | 18 14 | ringcl | |- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. ( Base ` R ) /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) e. ( Base ` R ) ) |
| 56 | 30 36 54 55 | syl3anc | |- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) e. ( Base ` R ) ) |
| 57 | disjdif | |- ( ( pmEven ` N ) i^i ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = (/) |
|
| 58 | 57 | a1i | |- ( ph -> ( ( pmEven ` N ) i^i ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = (/) ) |
| 59 | 27 11 | evpmss | |- ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
| 60 | undif | |- ( ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) <-> ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( Base ` ( SymGrp ` N ) ) ) |
|
| 61 | 59 60 | mpbi | |- ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( Base ` ( SymGrp ` N ) ) |
| 62 | 61 | eqcomi | |- ( Base ` ( SymGrp ` N ) ) = ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 63 | 62 | a1i | |- ( ph -> ( Base ` ( SymGrp ` N ) ) = ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) |
| 64 | eqid | |- ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
|
| 65 | 18 19 23 29 56 58 63 64 | gsummptfidmsplitres | |- ( ph -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) ) |
| 66 | resmpt | |- ( ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
|
| 67 | 59 66 | ax-mp | |- ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 68 | 21 | adantr | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> R e. Ring ) |
| 69 | 26 | adantr | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> N e. Fin ) |
| 70 | simpr | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> p e. ( pmEven ` N ) ) |
|
| 71 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 72 | 12 13 71 | zrhpsgnevpm | |- ( ( R e. Ring /\ N e. Fin /\ p e. ( pmEven ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( 1r ` R ) ) |
| 73 | 68 69 70 72 | syl3anc | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( 1r ` R ) ) |
| 74 | 73 | oveq1d | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 75 | 59 | sseli | |- ( p e. ( pmEven ` N ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
| 76 | 75 54 | sylan2 | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
| 77 | 18 14 71 | ringlidm | |- ( ( R e. Ring /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
| 78 | 68 76 77 | syl2anc | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
| 79 | 74 78 | eqtrd | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
| 80 | 79 | mpteq2dva | |- ( ph -> ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 81 | 67 80 | eqtrid | |- ( ph -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 82 | 81 | oveq2d | |- ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 83 | difss | |- ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) |
|
| 84 | resmpt | |- ( ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
|
| 85 | 83 84 | ax-mp | |- ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 86 | 21 | adantr | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> R e. Ring ) |
| 87 | 26 | adantr | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> N e. Fin ) |
| 88 | simpr | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
|
| 89 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 90 | 12 13 71 11 89 | zrhpsgnodpm | |- ( ( R e. Ring /\ N e. Fin /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
| 91 | 86 87 88 90 | syl3anc | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
| 92 | 91 | oveq1d | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 93 | eldifi | |- ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
|
| 94 | 93 54 | sylan2 | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
| 95 | 18 14 71 89 86 94 | ringnegl | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 96 | 92 95 | eqtrd | |- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 97 | 96 | mpteq2dva | |- ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 98 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 99 | 21 98 | syl | |- ( ph -> R e. Grp ) |
| 100 | 18 89 | grpinvf | |- ( R e. Grp -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 101 | 99 100 | syl | |- ( ph -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 102 | 101 94 | cofmpt | |- ( ph -> ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 103 | 97 102 | eqtr4d | |- ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 104 | 85 103 | eqtrid | |- ( ph -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 105 | 104 | oveq2d | |- ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) = ( R gsum ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
| 106 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
| 107 | 21 106 | syl | |- ( ph -> R e. Abel ) |
| 108 | difssd | |- ( ph -> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) ) |
|
| 109 | 29 108 | ssfid | |- ( ph -> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) e. Fin ) |
| 110 | eqid | |- ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
|
| 111 | 18 4 89 107 109 94 110 | gsummptfidminv | |- ( ph -> ( R gsum ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
| 112 | 94 | ralrimiva | |- ( ph -> A. p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
| 113 | 7 8 | prssd | |- ( ph -> { I , J } C_ N ) |
| 114 | enpr2 | |- ( ( I e. N /\ J e. N /\ I =/= J ) -> { I , J } ~~ 2o ) |
|
| 115 | 7 8 9 114 | syl3anc | |- ( ph -> { I , J } ~~ 2o ) |
| 116 | eqid | |- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
|
| 117 | eqid | |- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
|
| 118 | 116 117 | pmtrrn | |- ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) |
| 119 | 26 113 115 118 | syl3anc | |- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) |
| 120 | 27 11 117 | pmtrodpm | |- ( ( N e. Fin /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 121 | 26 119 120 | syl2anc | |- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 122 | 27 11 | evpmodpmf1o | |- ( ( N e. Fin /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) : ( pmEven ` N ) -1-1-onto-> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 123 | 26 121 122 | syl2anc | |- ( ph -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) : ( pmEven ` N ) -1-1-onto-> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 124 | 18 23 109 112 110 123 | gsummptfif1o | |- ( ph -> ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( R gsum ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) ) ) |
| 125 | eleq1w | |- ( p = q -> ( p e. ( pmEven ` N ) <-> q e. ( pmEven ` N ) ) ) |
|
| 126 | 125 | anbi2d | |- ( p = q -> ( ( ph /\ p e. ( pmEven ` N ) ) <-> ( ph /\ q e. ( pmEven ` N ) ) ) ) |
| 127 | oveq2 | |- ( p = q -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) |
|
| 128 | 127 | eleq1d | |- ( p = q -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) |
| 129 | 126 128 | imbi12d | |- ( p = q -> ( ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) <-> ( ( ph /\ q e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) |
| 130 | 27 | symggrp | |- ( N e. Fin -> ( SymGrp ` N ) e. Grp ) |
| 131 | 26 130 | syl | |- ( ph -> ( SymGrp ` N ) e. Grp ) |
| 132 | 131 | adantr | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( SymGrp ` N ) e. Grp ) |
| 133 | 117 27 11 | symgtrf | |- ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
| 134 | 119 | adantr | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) |
| 135 | 133 134 | sselid | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) ) |
| 136 | 75 | adantl | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
| 137 | eqid | |- ( +g ` ( SymGrp ` N ) ) = ( +g ` ( SymGrp ` N ) ) |
|
| 138 | 11 137 | grpcl | |- ( ( ( SymGrp ` N ) e. Grp /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) ) |
| 139 | 132 135 136 138 | syl3anc | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) ) |
| 140 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 141 | 27 13 140 | psgnghm2 | |- ( N e. Fin -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 142 | 26 141 | syl | |- ( ph -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 143 | 142 | adantr | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 144 | prex | |- { 1 , -u 1 } e. _V |
|
| 145 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 146 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 147 | 145 146 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 148 | 140 147 | ressplusg | |- ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 149 | 144 148 | ax-mp | |- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 150 | 11 137 149 | ghmlin | |- ( ( ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) ) |
| 151 | 143 135 136 150 | syl3anc | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) ) |
| 152 | 27 117 13 | psgnpmtr | |- ( ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) -> ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) = -u 1 ) |
| 153 | 134 152 | syl | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) = -u 1 ) |
| 154 | 27 11 13 | psgnevpm | |- ( ( N e. Fin /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` p ) = 1 ) |
| 155 | 26 154 | sylan | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` p ) = 1 ) |
| 156 | 153 155 | oveq12d | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) = ( -u 1 x. 1 ) ) |
| 157 | neg1cn | |- -u 1 e. CC |
|
| 158 | 157 | mulridi | |- ( -u 1 x. 1 ) = -u 1 |
| 159 | 156 158 | eqtrdi | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) = -u 1 ) |
| 160 | 151 159 | eqtrd | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = -u 1 ) |
| 161 | 27 11 13 | psgnodpmr | |- ( ( N e. Fin /\ ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) /\ ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = -u 1 ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 162 | 69 139 160 161 | syl3anc | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 163 | 129 162 | chvarvv | |- ( ( ph /\ q e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
| 164 | eqidd | |- ( ph -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) = ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) |
|
| 165 | eqidd | |- ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
|
| 166 | fveq1 | |- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( p ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) ) |
|
| 167 | 166 | oveq1d | |- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( ( p ` c ) X c ) = ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) |
| 168 | 167 | mpteq2dv | |- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( c e. N |-> ( ( p ` c ) X c ) ) = ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) |
| 169 | 168 | oveq2d | |- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) |
| 170 | 163 164 165 169 | fmptco | |- ( ph -> ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) = ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) ) |
| 171 | oveq2 | |- ( q = p -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) |
|
| 172 | 171 | fveq1d | |- ( q = p -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) ) |
| 173 | 172 | oveq1d | |- ( q = p -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) = ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) |
| 174 | 173 | mpteq2dv | |- ( q = p -> ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) = ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) |
| 175 | 174 | oveq2d | |- ( q = p -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) |
| 176 | 175 | cbvmptv | |- ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) |
| 177 | 176 | a1i | |- ( ph -> ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) ) |
| 178 | 135 | adantr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) ) |
| 179 | 136 | adantr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
| 180 | 27 11 137 | symgov | |- ( ( ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ) |
| 181 | 178 179 180 | syl2anc | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ) |
| 182 | 181 | fveq1d | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) ) |
| 183 | 75 49 | sylan2 | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> p : N --> N ) |
| 184 | fvco3 | |- ( ( p : N --> N /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) |
|
| 185 | 183 184 | sylan | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) |
| 186 | 182 185 | eqtrd | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) |
| 187 | 186 | oveq1d | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) ) |
| 188 | 116 | pmtrprfv | |- ( ( N e. Fin /\ ( I e. N /\ J e. N /\ I =/= J ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) |
| 189 | 26 7 8 9 188 | syl13anc | |- ( ph -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) |
| 190 | 189 | ad2antrr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) |
| 191 | 190 | oveq1d | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( J X c ) ) |
| 192 | oveq2 | |- ( a = c -> ( I X a ) = ( I X c ) ) |
|
| 193 | oveq2 | |- ( a = c -> ( J X a ) = ( J X c ) ) |
|
| 194 | 192 193 | eqeq12d | |- ( a = c -> ( ( I X a ) = ( J X a ) <-> ( I X c ) = ( J X c ) ) ) |
| 195 | 10 | ad2antrr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> A. a e. N ( I X a ) = ( J X a ) ) |
| 196 | simpr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> c e. N ) |
|
| 197 | 194 195 196 | rspcdva | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( I X c ) = ( J X c ) ) |
| 198 | 191 197 | eqtr4d | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( I X c ) ) |
| 199 | fveq2 | |- ( ( p ` c ) = I -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) ) |
|
| 200 | 199 | oveq1d | |- ( ( p ` c ) = I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) ) |
| 201 | oveq1 | |- ( ( p ` c ) = I -> ( ( p ` c ) X c ) = ( I X c ) ) |
|
| 202 | 200 201 | eqeq12d | |- ( ( p ` c ) = I -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) <-> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( I X c ) ) ) |
| 203 | 198 202 | syl5ibrcom | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) |
| 204 | prcom | |- { I , J } = { J , I } |
|
| 205 | 204 | fveq2i | |- ( ( pmTrsp ` N ) ` { I , J } ) = ( ( pmTrsp ` N ) ` { J , I } ) |
| 206 | 205 | fveq1i | |- ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) = ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) |
| 207 | 9 | necomd | |- ( ph -> J =/= I ) |
| 208 | 116 | pmtrprfv | |- ( ( N e. Fin /\ ( J e. N /\ I e. N /\ J =/= I ) ) -> ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) = I ) |
| 209 | 26 8 7 207 208 | syl13anc | |- ( ph -> ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) = I ) |
| 210 | 206 209 | eqtrid | |- ( ph -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) = I ) |
| 211 | 210 | oveq1d | |- ( ph -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( I X c ) ) |
| 212 | 211 | ad2antrr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( I X c ) ) |
| 213 | 212 197 | eqtrd | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( J X c ) ) |
| 214 | fveq2 | |- ( ( p ` c ) = J -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) ) |
|
| 215 | 214 | oveq1d | |- ( ( p ` c ) = J -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) ) |
| 216 | oveq1 | |- ( ( p ` c ) = J -> ( ( p ` c ) X c ) = ( J X c ) ) |
|
| 217 | 215 216 | eqeq12d | |- ( ( p ` c ) = J -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) <-> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( J X c ) ) ) |
| 218 | 213 217 | syl5ibrcom | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = J -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) |
| 219 | 218 | a1dd | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = J -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) ) |
| 220 | neanior | |- ( ( ( p ` c ) =/= J /\ ( p ` c ) =/= I ) <-> -. ( ( p ` c ) = J \/ ( p ` c ) = I ) ) |
|
| 221 | elpri | |- ( ( p ` c ) e. { I , J } -> ( ( p ` c ) = I \/ ( p ` c ) = J ) ) |
|
| 222 | 221 | orcomd | |- ( ( p ` c ) e. { I , J } -> ( ( p ` c ) = J \/ ( p ` c ) = I ) ) |
| 223 | 222 | con3i | |- ( -. ( ( p ` c ) = J \/ ( p ` c ) = I ) -> -. ( p ` c ) e. { I , J } ) |
| 224 | 220 223 | sylbi | |- ( ( ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. { I , J } ) |
| 225 | 224 | 3adant1 | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. { I , J } ) |
| 226 | 116 | pmtrmvd | |- ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
| 227 | 26 113 115 226 | syl3anc | |- ( ph -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
| 228 | 227 | ad2antrr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
| 229 | 228 | 3ad2ant1 | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
| 230 | 225 229 | neleqtrrd | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) ) |
| 231 | 116 | pmtrf | |- ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { I , J } ) : N --> N ) |
| 232 | 26 113 115 231 | syl3anc | |- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) : N --> N ) |
| 233 | 232 | ffnd | |- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) Fn N ) |
| 234 | 233 | ad2antrr | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( pmTrsp ` N ) ` { I , J } ) Fn N ) |
| 235 | 183 | ffvelcdmda | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( p ` c ) e. N ) |
| 236 | fnelnfp | |- ( ( ( ( pmTrsp ` N ) ` { I , J } ) Fn N /\ ( p ` c ) e. N ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) |
|
| 237 | 234 235 236 | syl2anc | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) |
| 238 | 237 | 3ad2ant1 | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) |
| 239 | 238 | necon2bbid | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( p ` c ) <-> -. ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) ) ) |
| 240 | 230 239 | mpbird | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( p ` c ) ) |
| 241 | 240 | oveq1d | |- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) |
| 242 | 241 | 3exp | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) =/= J -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) ) |
| 243 | 219 242 | pm2.61dne | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) |
| 244 | 203 243 | pm2.61dne | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) |
| 245 | 187 244 | eqtrd | |- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) = ( ( p ` c ) X c ) ) |
| 246 | 245 | mpteq2dva | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) = ( c e. N |-> ( ( p ` c ) X c ) ) ) |
| 247 | 246 | oveq2d | |- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
| 248 | 247 | mpteq2dva | |- ( ph -> ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 249 | 170 177 248 | 3eqtrd | |- ( ph -> ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
| 250 | 249 | oveq2d | |- ( ph -> ( R gsum ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 251 | 124 250 | eqtrd | |- ( ph -> ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
| 252 | 251 | fveq2d | |- ( ph -> ( ( invg ` R ) ` ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
| 253 | 105 111 252 | 3eqtrd | |- ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
| 254 | 82 253 | oveq12d | |- ( ph -> ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) = ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) ) |
| 255 | 59 | a1i | |- ( ph -> ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) ) |
| 256 | 29 255 | ssfid | |- ( ph -> ( pmEven ` N ) e. Fin ) |
| 257 | 76 | ralrimiva | |- ( ph -> A. p e. ( pmEven ` N ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
| 258 | 18 23 256 257 | gsummptcl | |- ( ph -> ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) e. ( Base ` R ) ) |
| 259 | 18 19 4 89 | grprinv | |- ( ( R e. Grp /\ ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) e. ( Base ` R ) ) -> ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) = .0. ) |
| 260 | 99 258 259 | syl2anc | |- ( ph -> ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) = .0. ) |
| 261 | 254 260 | eqtrd | |- ( ph -> ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) = .0. ) |
| 262 | 17 65 261 | 3eqtrd | |- ( ph -> ( D ` X ) = .0. ) |