This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| Assertion | pmtrf | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) : D --> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| 2 | 1 | pmtrval | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ) |
| 3 | simpll2 | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> P C_ D ) |
|
| 4 | 1onn | |- 1o e. _om |
|
| 5 | simpll3 | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> P ~~ 2o ) |
|
| 6 | df-2o | |- 2o = suc 1o |
|
| 7 | 5 6 | breqtrdi | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> P ~~ suc 1o ) |
| 8 | simpr | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> z e. P ) |
|
| 9 | dif1ennn | |- ( ( 1o e. _om /\ P ~~ suc 1o /\ z e. P ) -> ( P \ { z } ) ~~ 1o ) |
|
| 10 | 4 7 8 9 | mp3an2i | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> ( P \ { z } ) ~~ 1o ) |
| 11 | en1uniel | |- ( ( P \ { z } ) ~~ 1o -> U. ( P \ { z } ) e. ( P \ { z } ) ) |
|
| 12 | eldifi | |- ( U. ( P \ { z } ) e. ( P \ { z } ) -> U. ( P \ { z } ) e. P ) |
|
| 13 | 10 11 12 | 3syl | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> U. ( P \ { z } ) e. P ) |
| 14 | 3 13 | sseldd | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ z e. P ) -> U. ( P \ { z } ) e. D ) |
| 15 | simplr | |- ( ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) /\ -. z e. P ) -> z e. D ) |
|
| 16 | 14 15 | ifclda | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> if ( z e. P , U. ( P \ { z } ) , z ) e. D ) |
| 17 | 2 16 | fmpt3d | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) : D --> D ) |