This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmodpmf1o.s | |- S = ( SymGrp ` D ) |
|
| evpmodpmf1o.p | |- P = ( Base ` S ) |
||
| Assertion | evpmodpmf1o | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) -1-1-onto-> ( P \ ( pmEven ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmodpmf1o.s | |- S = ( SymGrp ` D ) |
|
| 2 | evpmodpmf1o.p | |- P = ( Base ` S ) |
|
| 3 | simpll | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> D e. Fin ) |
|
| 4 | 1 | symggrp | |- ( D e. Fin -> S e. Grp ) |
| 5 | 4 | ad2antrr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> S e. Grp ) |
| 6 | eldifi | |- ( F e. ( P \ ( pmEven ` D ) ) -> F e. P ) |
|
| 7 | 6 | ad2antlr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> F e. P ) |
| 8 | 1 2 | evpmss | |- ( pmEven ` D ) C_ P |
| 9 | 8 | sseli | |- ( f e. ( pmEven ` D ) -> f e. P ) |
| 10 | 9 | adantl | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> f e. P ) |
| 11 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 12 | 2 11 | grpcl | |- ( ( S e. Grp /\ F e. P /\ f e. P ) -> ( F ( +g ` S ) f ) e. P ) |
| 13 | 5 7 10 12 | syl3anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( F ( +g ` S ) f ) e. P ) |
| 14 | eqid | |- ( pmSgn ` D ) = ( pmSgn ` D ) |
|
| 15 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 16 | 1 14 15 | psgnghm2 | |- ( D e. Fin -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 18 | prex | |- { 1 , -u 1 } e. _V |
|
| 19 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 20 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 21 | 19 20 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 22 | 15 21 | ressplusg | |- ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 23 | 18 22 | ax-mp | |- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 24 | 2 11 23 | ghmlin | |- ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ f e. P ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) ) |
| 25 | 17 7 10 24 | syl3anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) ) |
| 26 | 1 2 14 | psgnodpm | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 27 | 26 | adantr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 28 | 1 2 14 | psgnevpm | |- ( ( D e. Fin /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` f ) = 1 ) |
| 29 | 28 | adantlr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` f ) = 1 ) |
| 30 | 27 29 | oveq12d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) = ( -u 1 x. 1 ) ) |
| 31 | ax-1cn | |- 1 e. CC |
|
| 32 | 31 | mulm1i | |- ( -u 1 x. 1 ) = -u 1 |
| 33 | 30 32 | eqtrdi | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) = -u 1 ) |
| 34 | 25 33 | eqtrd | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = -u 1 ) |
| 35 | 1 2 14 | psgnodpmr | |- ( ( D e. Fin /\ ( F ( +g ` S ) f ) e. P /\ ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = -u 1 ) -> ( F ( +g ` S ) f ) e. ( P \ ( pmEven ` D ) ) ) |
| 36 | 3 13 34 35 | syl3anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( F ( +g ` S ) f ) e. ( P \ ( pmEven ` D ) ) ) |
| 37 | 36 | fmpttd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) --> ( P \ ( pmEven ` D ) ) ) |
| 38 | 4 | ad2antrr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> S e. Grp ) |
| 39 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 40 | 2 39 | grpinvcl | |- ( ( S e. Grp /\ F e. P ) -> ( ( invg ` S ) ` F ) e. P ) |
| 41 | 4 6 40 | syl2an | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) e. P ) |
| 42 | 41 | adantr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) e. P ) |
| 43 | eldifi | |- ( g e. ( P \ ( pmEven ` D ) ) -> g e. P ) |
|
| 44 | 43 | adantl | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> g e. P ) |
| 45 | 2 11 | grpcl | |- ( ( S e. Grp /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P ) |
| 46 | 38 42 44 45 | syl3anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P ) |
| 47 | 16 | ad2antrr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 48 | 2 11 23 | ghmlin | |- ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) ) |
| 49 | 47 42 44 48 | syl3anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) ) |
| 50 | 1 2 39 | symginv | |- ( F e. P -> ( ( invg ` S ) ` F ) = `' F ) |
| 51 | 6 50 | syl | |- ( F e. ( P \ ( pmEven ` D ) ) -> ( ( invg ` S ) ` F ) = `' F ) |
| 52 | 51 | ad2antlr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) = `' F ) |
| 53 | 52 | fveq2d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) = ( ( pmSgn ` D ) ` `' F ) ) |
| 54 | 1 2 14 | psgnodpm | |- ( ( D e. Fin /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` g ) = -u 1 ) |
| 55 | 54 | adantlr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` g ) = -u 1 ) |
| 56 | 53 55 | oveq12d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) = ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) ) |
| 57 | simpll | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> D e. Fin ) |
|
| 58 | 6 | ad2antlr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> F e. P ) |
| 59 | 1 14 2 | psgninv | |- ( ( D e. Fin /\ F e. P ) -> ( ( pmSgn ` D ) ` `' F ) = ( ( pmSgn ` D ) ` F ) ) |
| 60 | 57 58 59 | syl2anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` `' F ) = ( ( pmSgn ` D ) ` F ) ) |
| 61 | 26 | adantr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 62 | 60 61 | eqtrd | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` `' F ) = -u 1 ) |
| 63 | 62 | oveq1d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) = ( -u 1 x. -u 1 ) ) |
| 64 | neg1mulneg1e1 | |- ( -u 1 x. -u 1 ) = 1 |
|
| 65 | 63 64 | eqtrdi | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) = 1 ) |
| 66 | 49 56 65 | 3eqtrd | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) |
| 67 | 1 2 14 | psgnevpmb | |- ( D e. Fin -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) <-> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P /\ ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) ) ) |
| 68 | 67 | ad2antrr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) <-> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P /\ ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) ) ) |
| 69 | 46 66 68 | mpbir2and | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) ) |
| 70 | 69 | fmpttd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) : ( P \ ( pmEven ` D ) ) --> ( pmEven ` D ) ) |
| 71 | eqidd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) = ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) |
|
| 72 | eqidd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
|
| 73 | oveq2 | |- ( g = ( F ( +g ` S ) f ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) |
|
| 74 | 36 71 72 73 | fmptco | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) ) |
| 75 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 76 | 2 11 75 39 | grplinv | |- ( ( S e. Grp /\ F e. P ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) = ( 0g ` S ) ) |
| 77 | 5 7 76 | syl2anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) = ( 0g ` S ) ) |
| 78 | 77 | oveq1d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( 0g ` S ) ( +g ` S ) f ) ) |
| 79 | 41 | adantr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( invg ` S ) ` F ) e. P ) |
| 80 | 2 11 | grpass | |- ( ( S e. Grp /\ ( ( ( invg ` S ) ` F ) e. P /\ F e. P /\ f e. P ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) |
| 81 | 5 79 7 10 80 | syl13anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) |
| 82 | 2 11 75 | grplid | |- ( ( S e. Grp /\ f e. P ) -> ( ( 0g ` S ) ( +g ` S ) f ) = f ) |
| 83 | 5 10 82 | syl2anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( 0g ` S ) ( +g ` S ) f ) = f ) |
| 84 | 78 81 83 | 3eqtr3d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) = f ) |
| 85 | 84 | mpteq2dva | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> f ) ) |
| 86 | 74 85 | eqtrd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> f ) ) |
| 87 | mptresid | |- ( _I |` ( pmEven ` D ) ) = ( f e. ( pmEven ` D ) |-> f ) |
|
| 88 | 86 87 | eqtr4di | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( _I |` ( pmEven ` D ) ) ) |
| 89 | oveq2 | |- ( f = ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) -> ( F ( +g ` S ) f ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
|
| 90 | 69 72 71 89 | fmptco | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) ) |
| 91 | 2 11 75 39 | grprinv | |- ( ( S e. Grp /\ F e. P ) -> ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) = ( 0g ` S ) ) |
| 92 | 4 6 91 | syl2an | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) = ( 0g ` S ) ) |
| 93 | 92 | oveq1d | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( ( 0g ` S ) ( +g ` S ) g ) ) |
| 94 | 93 | adantr | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( ( 0g ` S ) ( +g ` S ) g ) ) |
| 95 | 2 11 | grpass | |- ( ( S e. Grp /\ ( F e. P /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
| 96 | 38 58 42 44 95 | syl13anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
| 97 | 2 11 75 | grplid | |- ( ( S e. Grp /\ g e. P ) -> ( ( 0g ` S ) ( +g ` S ) g ) = g ) |
| 98 | 38 44 97 | syl2anc | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( 0g ` S ) ( +g ` S ) g ) = g ) |
| 99 | 94 96 98 | 3eqtr3d | |- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = g ) |
| 100 | 99 | mpteq2dva | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) ) |
| 101 | 90 100 | eqtrd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) ) |
| 102 | mptresid | |- ( _I |` ( P \ ( pmEven ` D ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) |
|
| 103 | 101 102 | eqtr4di | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( _I |` ( P \ ( pmEven ` D ) ) ) ) |
| 104 | 37 70 88 103 | fcof1od | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) -1-1-onto-> ( P \ ( pmEven ` D ) ) ) |