This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnghm2.s | |- S = ( SymGrp ` D ) |
|
| psgnghm2.n | |- N = ( pmSgn ` D ) |
||
| psgnghm2.u | |- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
||
| Assertion | psgnghm2 | |- ( D e. Fin -> N e. ( S GrpHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnghm2.s | |- S = ( SymGrp ` D ) |
|
| 2 | psgnghm2.n | |- N = ( pmSgn ` D ) |
|
| 3 | psgnghm2.u | |- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 4 | eqid | |- ( S |`s dom N ) = ( S |`s dom N ) |
|
| 5 | 1 2 4 3 | psgnghm | |- ( D e. Fin -> N e. ( ( S |`s dom N ) GrpHom U ) ) |
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | 1 6 | sygbasnfpfi | |- ( ( D e. Fin /\ x e. ( Base ` S ) ) -> dom ( x \ _I ) e. Fin ) |
| 8 | 7 | ralrimiva | |- ( D e. Fin -> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin ) |
| 9 | rabid2 | |- ( ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } <-> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin ) |
|
| 10 | 8 9 | sylibr | |- ( D e. Fin -> ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } ) |
| 11 | eqid | |- { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
|
| 12 | 1 6 11 2 | psgnfn | |- N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 13 | 12 | fndmi | |- dom N = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 14 | 10 13 | eqtr4di | |- ( D e. Fin -> ( Base ` S ) = dom N ) |
| 15 | eqimss | |- ( ( Base ` S ) = dom N -> ( Base ` S ) C_ dom N ) |
|
| 16 | 1 | fvexi | |- S e. _V |
| 17 | 2 | fvexi | |- N e. _V |
| 18 | 17 | dmex | |- dom N e. _V |
| 19 | 4 6 | ressid2 | |- ( ( ( Base ` S ) C_ dom N /\ S e. _V /\ dom N e. _V ) -> ( S |`s dom N ) = S ) |
| 20 | 16 18 19 | mp3an23 | |- ( ( Base ` S ) C_ dom N -> ( S |`s dom N ) = S ) |
| 21 | 14 15 20 | 3syl | |- ( D e. Fin -> ( S |`s dom N ) = S ) |
| 22 | 21 | oveq1d | |- ( D e. Fin -> ( ( S |`s dom N ) GrpHom U ) = ( S GrpHom U ) ) |
| 23 | 5 22 | eleqtrd | |- ( D e. Fin -> N e. ( S GrpHom U ) ) |