This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Pairing using class variables. Theorem 7.13 of Quine p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc ), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prex | |- { A , B } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 | |- ( y = B -> { x , y } = { x , B } ) |
|
| 2 | 1 | eleq1d | |- ( y = B -> ( { x , y } e. _V <-> { x , B } e. _V ) ) |
| 3 | zfpair2 | |- { x , y } e. _V |
|
| 4 | 2 3 | vtoclg | |- ( B e. _V -> { x , B } e. _V ) |
| 5 | preq1 | |- ( x = A -> { x , B } = { A , B } ) |
|
| 6 | 5 | eleq1d | |- ( x = A -> ( { x , B } e. _V <-> { A , B } e. _V ) ) |
| 7 | 4 6 | imbitrid | |- ( x = A -> ( B e. _V -> { A , B } e. _V ) ) |
| 8 | 7 | vtocleg | |- ( A e. _V -> ( B e. _V -> { A , B } e. _V ) ) |
| 9 | prprc1 | |- ( -. A e. _V -> { A , B } = { B } ) |
|
| 10 | snex | |- { B } e. _V |
|
| 11 | 9 10 | eqeltrdi | |- ( -. A e. _V -> { A , B } e. _V ) |
| 12 | prprc2 | |- ( -. B e. _V -> { A , B } = { A } ) |
|
| 13 | snex | |- { A } e. _V |
|
| 14 | 12 13 | eqeltrdi | |- ( -. B e. _V -> { A , B } e. _V ) |
| 15 | 8 11 14 | pm2.61nii | |- { A , B } e. _V |