This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.b | |- B = ( Base ` G ) |
|
| grpinvcl.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvf | |- ( G e. Grp -> N : B --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | |- B = ( Base ` G ) |
|
| 2 | grpinvcl.n | |- N = ( invg ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 1 3 4 | grpinveu | |- ( ( G e. Grp /\ x e. B ) -> E! y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) |
| 6 | riotacl | |- ( E! y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) -> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) e. B ) |
|
| 7 | 5 6 | syl | |- ( ( G e. Grp /\ x e. B ) -> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) e. B ) |
| 8 | 1 3 4 2 | grpinvfval | |- N = ( x e. B |-> ( iota_ y e. B ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 9 | 7 8 | fmptd | |- ( G e. Grp -> N : B --> B ) |