This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| Assertion | symgbasfi | |- ( A e. Fin -> B e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | mapfi | |- ( ( A e. Fin /\ A e. Fin ) -> ( A ^m A ) e. Fin ) |
|
| 4 | 3 | anidms | |- ( A e. Fin -> ( A ^m A ) e. Fin ) |
| 5 | 1 2 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
| 6 | f1of | |- ( f : A -1-1-onto-> A -> f : A --> A ) |
|
| 7 | 6 | ss2abi | |- { f | f : A -1-1-onto-> A } C_ { f | f : A --> A } |
| 8 | 5 7 | eqsstri | |- B C_ { f | f : A --> A } |
| 9 | mapvalg | |- ( ( A e. Fin /\ A e. Fin ) -> ( A ^m A ) = { f | f : A --> A } ) |
|
| 10 | 9 | anidms | |- ( A e. Fin -> ( A ^m A ) = { f | f : A --> A } ) |
| 11 | 8 10 | sseqtrrid | |- ( A e. Fin -> B C_ ( A ^m A ) ) |
| 12 | 4 11 | ssfid | |- ( A e. Fin -> B e. Fin ) |