This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmodpmf1o.s | |- S = ( SymGrp ` D ) |
|
| evpmodpmf1o.p | |- P = ( Base ` S ) |
||
| pmtrodpm.t | |- T = ran ( pmTrsp ` D ) |
||
| Assertion | pmtrodpm | |- ( ( D e. Fin /\ F e. T ) -> F e. ( P \ ( pmEven ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmodpmf1o.s | |- S = ( SymGrp ` D ) |
|
| 2 | evpmodpmf1o.p | |- P = ( Base ` S ) |
|
| 3 | pmtrodpm.t | |- T = ran ( pmTrsp ` D ) |
|
| 4 | simpl | |- ( ( D e. Fin /\ F e. T ) -> D e. Fin ) |
|
| 5 | 3 1 2 | symgtrf | |- T C_ P |
| 6 | 5 | sseli | |- ( F e. T -> F e. P ) |
| 7 | 6 | adantl | |- ( ( D e. Fin /\ F e. T ) -> F e. P ) |
| 8 | eqid | |- ( pmSgn ` D ) = ( pmSgn ` D ) |
|
| 9 | 1 3 8 | psgnpmtr | |- ( F e. T -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 10 | 9 | adantl | |- ( ( D e. Fin /\ F e. T ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 11 | 1 2 8 | psgnodpmr | |- ( ( D e. Fin /\ F e. P /\ ( ( pmSgn ` D ) ` F ) = -u 1 ) -> F e. ( P \ ( pmEven ` D ) ) ) |
| 12 | 4 7 10 11 | syl3anc | |- ( ( D e. Fin /\ F e. T ) -> F e. ( P \ ( pmEven ` D ) ) ) |