This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnpmtr | |- ( P e. T -> ( N ` P ) = -u 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 2 1 4 | symgtrf | |- T C_ ( Base ` G ) |
| 6 | 5 | sseli | |- ( P e. T -> P e. ( Base ` G ) ) |
| 7 | 4 | gsumws1 | |- ( P e. ( Base ` G ) -> ( G gsum <" P "> ) = P ) |
| 8 | 6 7 | syl | |- ( P e. T -> ( G gsum <" P "> ) = P ) |
| 9 | 8 | fveq2d | |- ( P e. T -> ( N ` ( G gsum <" P "> ) ) = ( N ` P ) ) |
| 10 | 1 4 | elbasfv | |- ( P e. ( Base ` G ) -> D e. _V ) |
| 11 | 6 10 | syl | |- ( P e. T -> D e. _V ) |
| 12 | s1cl | |- ( P e. T -> <" P "> e. Word T ) |
|
| 13 | 1 2 3 | psgnvalii | |- ( ( D e. _V /\ <" P "> e. Word T ) -> ( N ` ( G gsum <" P "> ) ) = ( -u 1 ^ ( # ` <" P "> ) ) ) |
| 14 | 11 12 13 | syl2anc | |- ( P e. T -> ( N ` ( G gsum <" P "> ) ) = ( -u 1 ^ ( # ` <" P "> ) ) ) |
| 15 | s1len | |- ( # ` <" P "> ) = 1 |
|
| 16 | 15 | oveq2i | |- ( -u 1 ^ ( # ` <" P "> ) ) = ( -u 1 ^ 1 ) |
| 17 | neg1cn | |- -u 1 e. CC |
|
| 18 | exp1 | |- ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) |
|
| 19 | 17 18 | ax-mp | |- ( -u 1 ^ 1 ) = -u 1 |
| 20 | 16 19 | eqtri | |- ( -u 1 ^ ( # ` <" P "> ) ) = -u 1 |
| 21 | 14 20 | eqtrdi | |- ( P e. T -> ( N ` ( G gsum <" P "> ) ) = -u 1 ) |
| 22 | 9 21 | eqtr3d | |- ( P e. T -> ( N ` P ) = -u 1 ) |