This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the group operation of the symmetric group on A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Revised by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgov.1 | |- G = ( SymGrp ` A ) |
|
| symgov.2 | |- B = ( Base ` G ) |
||
| symgov.3 | |- .+ = ( +g ` G ) |
||
| Assertion | symgov | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) = ( X o. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgov.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgov.2 | |- B = ( Base ` G ) |
|
| 3 | symgov.3 | |- .+ = ( +g ` G ) |
|
| 4 | eqid | |- ( A ^m A ) = ( A ^m A ) |
|
| 5 | 1 4 3 | symgplusg | |- .+ = ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |
| 6 | 5 | a1i | |- ( ( X e. B /\ Y e. B ) -> .+ = ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) ) |
| 7 | simpl | |- ( ( f = X /\ g = Y ) -> f = X ) |
|
| 8 | simpr | |- ( ( f = X /\ g = Y ) -> g = Y ) |
|
| 9 | 7 8 | coeq12d | |- ( ( f = X /\ g = Y ) -> ( f o. g ) = ( X o. Y ) ) |
| 10 | 9 | adantl | |- ( ( ( X e. B /\ Y e. B ) /\ ( f = X /\ g = Y ) ) -> ( f o. g ) = ( X o. Y ) ) |
| 11 | 1 2 | symgbasmap | |- ( X e. B -> X e. ( A ^m A ) ) |
| 12 | 11 | adantr | |- ( ( X e. B /\ Y e. B ) -> X e. ( A ^m A ) ) |
| 13 | 1 2 | symgbasmap | |- ( Y e. B -> Y e. ( A ^m A ) ) |
| 14 | 13 | adantl | |- ( ( X e. B /\ Y e. B ) -> Y e. ( A ^m A ) ) |
| 15 | coexg | |- ( ( X e. B /\ Y e. B ) -> ( X o. Y ) e. _V ) |
|
| 16 | 6 10 12 14 15 | ovmpod | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) = ( X o. Y ) ) |