This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnevpm.y | |- Y = ( ZRHom ` R ) |
|
| zrhpsgnevpm.s | |- S = ( pmSgn ` N ) |
||
| zrhpsgnevpm.o | |- .1. = ( 1r ` R ) |
||
| Assertion | zrhpsgnevpm | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( ( Y o. S ) ` F ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnevpm.y | |- Y = ( ZRHom ` R ) |
|
| 2 | zrhpsgnevpm.s | |- S = ( pmSgn ` N ) |
|
| 3 | zrhpsgnevpm.o | |- .1. = ( 1r ` R ) |
|
| 4 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 5 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 6 | 4 2 5 | psgnghm2 | |- ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 7 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 8 | eqid | |- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 9 | 7 8 | ghmf | |- ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 10 | 6 9 | syl | |- ( N e. Fin -> S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 11 | 10 | 3ad2ant2 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 12 | 4 7 | evpmss | |- ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
| 13 | 12 | sseli | |- ( F e. ( pmEven ` N ) -> F e. ( Base ` ( SymGrp ` N ) ) ) |
| 14 | 13 | 3ad2ant3 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> F e. ( Base ` ( SymGrp ` N ) ) ) |
| 15 | fvco3 | |- ( ( S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
|
| 16 | 11 14 15 | syl2anc | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
| 17 | 4 7 2 | psgnevpm | |- ( ( N e. Fin /\ F e. ( pmEven ` N ) ) -> ( S ` F ) = 1 ) |
| 18 | 17 | 3adant1 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( S ` F ) = 1 ) |
| 19 | 18 | fveq2d | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( Y ` ( S ` F ) ) = ( Y ` 1 ) ) |
| 20 | 1 3 | zrh1 | |- ( R e. Ring -> ( Y ` 1 ) = .1. ) |
| 21 | 20 | 3ad2ant1 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( Y ` 1 ) = .1. ) |
| 22 | 16 19 21 | 3eqtrd | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( ( Y o. S ) ` F ) = .1. ) |