This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | |- B = ( Base ` G ) |
|
| grpinv.p | |- .+ = ( +g ` G ) |
||
| grpinv.u | |- .0. = ( 0g ` G ) |
||
| grpinv.n | |- N = ( invg ` G ) |
||
| Assertion | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinv.u | |- .0. = ( 0g ` G ) |
|
| 4 | grpinv.n | |- N = ( invg ` G ) |
|
| 5 | 1 2 | grpcl | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 6 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 7 | 1 2 3 | grplid | |- ( ( G e. Grp /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 8 | 1 2 | grpass | |- ( ( G e. Grp /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 9 | 1 2 3 | grpinvex | |- ( ( G e. Grp /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
| 10 | simpr | |- ( ( G e. Grp /\ X e. B ) -> X e. B ) |
|
| 11 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 12 | 1 2 3 4 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
| 13 | 5 6 7 8 9 10 11 12 | grpinva | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |