This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| Assertion | pmtrmvd | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| 2 | 1 | pmtrf | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) : D --> D ) |
| 3 | ffn | |- ( ( T ` P ) : D --> D -> ( T ` P ) Fn D ) |
|
| 4 | fndifnfp | |- ( ( T ` P ) Fn D -> dom ( ( T ` P ) \ _I ) = { z e. D | ( ( T ` P ) ` z ) =/= z } ) |
|
| 5 | 2 3 4 | 3syl | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = { z e. D | ( ( T ` P ) ` z ) =/= z } ) |
| 6 | 1 | pmtrfv | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( T ` P ) ` z ) = if ( z e. P , U. ( P \ { z } ) , z ) ) |
| 7 | 6 | neeq1d | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( ( T ` P ) ` z ) =/= z <-> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) ) |
| 8 | iffalse | |- ( -. z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) = z ) |
|
| 9 | 8 | necon1ai | |- ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z -> z e. P ) |
| 10 | iftrue | |- ( z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) = U. ( P \ { z } ) ) |
|
| 11 | 10 | adantl | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> if ( z e. P , U. ( P \ { z } ) , z ) = U. ( P \ { z } ) ) |
| 12 | 1onn | |- 1o e. _om |
|
| 13 | simpl3 | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> P ~~ 2o ) |
|
| 14 | df-2o | |- 2o = suc 1o |
|
| 15 | 13 14 | breqtrdi | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> P ~~ suc 1o ) |
| 16 | simpr | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> z e. P ) |
|
| 17 | dif1ennn | |- ( ( 1o e. _om /\ P ~~ suc 1o /\ z e. P ) -> ( P \ { z } ) ~~ 1o ) |
|
| 18 | 12 15 16 17 | mp3an2i | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> ( P \ { z } ) ~~ 1o ) |
| 19 | en1uniel | |- ( ( P \ { z } ) ~~ 1o -> U. ( P \ { z } ) e. ( P \ { z } ) ) |
|
| 20 | eldifsni | |- ( U. ( P \ { z } ) e. ( P \ { z } ) -> U. ( P \ { z } ) =/= z ) |
|
| 21 | 18 19 20 | 3syl | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> U. ( P \ { z } ) =/= z ) |
| 22 | 11 21 | eqnetrd | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) |
| 23 | 22 | ex | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) ) |
| 24 | 9 23 | impbid2 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z <-> z e. P ) ) |
| 25 | 24 | adantr | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z <-> z e. P ) ) |
| 26 | 7 25 | bitrd | |- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( ( T ` P ) ` z ) =/= z <-> z e. P ) ) |
| 27 | 26 | rabbidva | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> { z e. D | ( ( T ` P ) ` z ) =/= z } = { z e. D | z e. P } ) |
| 28 | incom | |- ( P i^i D ) = ( D i^i P ) |
|
| 29 | dfin5 | |- ( D i^i P ) = { z e. D | z e. P } |
|
| 30 | 28 29 | eqtri | |- ( P i^i D ) = { z e. D | z e. P } |
| 31 | 27 30 | eqtr4di | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> { z e. D | ( ( T ` P ) ` z ) =/= z } = ( P i^i D ) ) |
| 32 | simp2 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P C_ D ) |
|
| 33 | dfss2 | |- ( P C_ D <-> ( P i^i D ) = P ) |
|
| 34 | 32 33 | sylib | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( P i^i D ) = P ) |
| 35 | 5 31 34 | 3eqtrd | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = P ) |