This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnevpm.y | |- Y = ( ZRHom ` R ) |
|
| zrhpsgnevpm.s | |- S = ( pmSgn ` N ) |
||
| zrhpsgnevpm.o | |- .1. = ( 1r ` R ) |
||
| zrhpsgnodpm.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
| zrhpsgnodpm.i | |- I = ( invg ` R ) |
||
| Assertion | zrhpsgnodpm | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( I ` .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnevpm.y | |- Y = ( ZRHom ` R ) |
|
| 2 | zrhpsgnevpm.s | |- S = ( pmSgn ` N ) |
|
| 3 | zrhpsgnevpm.o | |- .1. = ( 1r ` R ) |
|
| 4 | zrhpsgnodpm.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 5 | zrhpsgnodpm.i | |- I = ( invg ` R ) |
|
| 6 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 7 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 8 | 6 2 7 | psgnghm2 | |- ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 9 | eqid | |- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 10 | 4 9 | ghmf | |- ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 11 | 8 10 | syl | |- ( N e. Fin -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 12 | 11 | 3ad2ant2 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 13 | eldifi | |- ( F e. ( P \ ( pmEven ` N ) ) -> F e. P ) |
|
| 14 | 13 | 3ad2ant3 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> F e. P ) |
| 15 | fvco3 | |- ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
| 17 | 6 4 2 | psgnodpm | |- ( ( N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( S ` F ) = -u 1 ) |
| 18 | 17 | 3adant1 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( S ` F ) = -u 1 ) |
| 19 | 18 | fveq2d | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( Y ` ( S ` F ) ) = ( Y ` -u 1 ) ) |
| 20 | 1 | zrhrhm | |- ( R e. Ring -> Y e. ( ZZring RingHom R ) ) |
| 21 | rhmghm | |- ( Y e. ( ZZring RingHom R ) -> Y e. ( ZZring GrpHom R ) ) |
|
| 22 | 20 21 | syl | |- ( R e. Ring -> Y e. ( ZZring GrpHom R ) ) |
| 23 | 1z | |- 1 e. ZZ |
|
| 24 | 23 | a1i | |- ( R e. Ring -> 1 e. ZZ ) |
| 25 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 26 | eqid | |- ( invg ` ZZring ) = ( invg ` ZZring ) |
|
| 27 | 25 26 5 | ghminv | |- ( ( Y e. ( ZZring GrpHom R ) /\ 1 e. ZZ ) -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( I ` ( Y ` 1 ) ) ) |
| 28 | 22 24 27 | syl2anc | |- ( R e. Ring -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( I ` ( Y ` 1 ) ) ) |
| 29 | zringinvg | |- ( 1 e. ZZ -> -u 1 = ( ( invg ` ZZring ) ` 1 ) ) |
|
| 30 | 23 29 | ax-mp | |- -u 1 = ( ( invg ` ZZring ) ` 1 ) |
| 31 | 30 | eqcomi | |- ( ( invg ` ZZring ) ` 1 ) = -u 1 |
| 32 | 31 | fveq2i | |- ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( Y ` -u 1 ) |
| 33 | 32 | a1i | |- ( R e. Ring -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( Y ` -u 1 ) ) |
| 34 | 1 3 | zrh1 | |- ( R e. Ring -> ( Y ` 1 ) = .1. ) |
| 35 | 34 | fveq2d | |- ( R e. Ring -> ( I ` ( Y ` 1 ) ) = ( I ` .1. ) ) |
| 36 | 28 33 35 | 3eqtr3d | |- ( R e. Ring -> ( Y ` -u 1 ) = ( I ` .1. ) ) |
| 37 | 36 | 3ad2ant1 | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( Y ` -u 1 ) = ( I ` .1. ) ) |
| 38 | 16 19 37 | 3eqtrd | |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( I ` .1. ) ) |