This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetralt2.d | |- D = ( N maDet R ) |
|
| mdetralt2.k | |- K = ( Base ` R ) |
||
| mdetralt2.z | |- .0. = ( 0g ` R ) |
||
| mdetralt2.r | |- ( ph -> R e. CRing ) |
||
| mdetralt2.n | |- ( ph -> N e. Fin ) |
||
| mdetralt2.x | |- ( ( ph /\ j e. N ) -> X e. K ) |
||
| mdetralt2.y | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
||
| mdetralt2.i | |- ( ph -> I e. N ) |
||
| mdetralt2.j | |- ( ph -> J e. N ) |
||
| mdetralt2.ij | |- ( ph -> I =/= J ) |
||
| Assertion | mdetralt2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetralt2.d | |- D = ( N maDet R ) |
|
| 2 | mdetralt2.k | |- K = ( Base ` R ) |
|
| 3 | mdetralt2.z | |- .0. = ( 0g ` R ) |
|
| 4 | mdetralt2.r | |- ( ph -> R e. CRing ) |
|
| 5 | mdetralt2.n | |- ( ph -> N e. Fin ) |
|
| 6 | mdetralt2.x | |- ( ( ph /\ j e. N ) -> X e. K ) |
|
| 7 | mdetralt2.y | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
|
| 8 | mdetralt2.i | |- ( ph -> I e. N ) |
|
| 9 | mdetralt2.j | |- ( ph -> J e. N ) |
|
| 10 | mdetralt2.ij | |- ( ph -> I =/= J ) |
|
| 11 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 12 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
| 13 | 6 | 3adant2 | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
| 14 | 13 7 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = J , X , Y ) e. K ) |
| 15 | 13 14 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , X , if ( i = J , X , Y ) ) e. K ) |
| 16 | 11 2 12 5 4 15 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) e. ( Base ` ( N Mat R ) ) ) |
| 17 | eqidd | |- ( ( ph /\ w e. N ) -> ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) = ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) ) |
|
| 18 | iftrue | |- ( i = I -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
|
| 19 | 18 | ad2antrl | |- ( ( ( ph /\ w e. N ) /\ ( i = I /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
| 20 | csbeq1a | |- ( j = w -> X = [_ w / j ]_ X ) |
|
| 21 | 20 | ad2antll | |- ( ( ( ph /\ w e. N ) /\ ( i = I /\ j = w ) ) -> X = [_ w / j ]_ X ) |
| 22 | 19 21 | eqtrd | |- ( ( ( ph /\ w e. N ) /\ ( i = I /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = [_ w / j ]_ X ) |
| 23 | eqidd | |- ( ( ( ph /\ w e. N ) /\ i = I ) -> N = N ) |
|
| 24 | 8 | adantr | |- ( ( ph /\ w e. N ) -> I e. N ) |
| 25 | simpr | |- ( ( ph /\ w e. N ) -> w e. N ) |
|
| 26 | nfv | |- F/ j ( ph /\ w e. N ) |
|
| 27 | nfcsb1v | |- F/_ j [_ w / j ]_ X |
|
| 28 | 27 | nfel1 | |- F/ j [_ w / j ]_ X e. K |
| 29 | 26 28 | nfim | |- F/ j ( ( ph /\ w e. N ) -> [_ w / j ]_ X e. K ) |
| 30 | eleq1w | |- ( j = w -> ( j e. N <-> w e. N ) ) |
|
| 31 | 30 | anbi2d | |- ( j = w -> ( ( ph /\ j e. N ) <-> ( ph /\ w e. N ) ) ) |
| 32 | 20 | eleq1d | |- ( j = w -> ( X e. K <-> [_ w / j ]_ X e. K ) ) |
| 33 | 31 32 | imbi12d | |- ( j = w -> ( ( ( ph /\ j e. N ) -> X e. K ) <-> ( ( ph /\ w e. N ) -> [_ w / j ]_ X e. K ) ) ) |
| 34 | 29 33 6 | chvarfv | |- ( ( ph /\ w e. N ) -> [_ w / j ]_ X e. K ) |
| 35 | nfv | |- F/ i ( ph /\ w e. N ) |
|
| 36 | nfcv | |- F/_ j I |
|
| 37 | nfcv | |- F/_ i w |
|
| 38 | nfcv | |- F/_ i [_ w / j ]_ X |
|
| 39 | 17 22 23 24 25 34 35 26 36 37 38 27 | ovmpodxf | |- ( ( ph /\ w e. N ) -> ( I ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = [_ w / j ]_ X ) |
| 40 | iftrue | |- ( i = J -> if ( i = J , X , Y ) = X ) |
|
| 41 | 40 | ifeq2d | |- ( i = J -> if ( i = I , X , if ( i = J , X , Y ) ) = if ( i = I , X , X ) ) |
| 42 | ifid | |- if ( i = I , X , X ) = X |
|
| 43 | 41 42 | eqtrdi | |- ( i = J -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
| 44 | 43 | ad2antrl | |- ( ( ( ph /\ w e. N ) /\ ( i = J /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
| 45 | 20 | ad2antll | |- ( ( ( ph /\ w e. N ) /\ ( i = J /\ j = w ) ) -> X = [_ w / j ]_ X ) |
| 46 | 44 45 | eqtrd | |- ( ( ( ph /\ w e. N ) /\ ( i = J /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = [_ w / j ]_ X ) |
| 47 | eqidd | |- ( ( ( ph /\ w e. N ) /\ i = J ) -> N = N ) |
|
| 48 | 9 | adantr | |- ( ( ph /\ w e. N ) -> J e. N ) |
| 49 | nfcv | |- F/_ j J |
|
| 50 | 17 46 47 48 25 34 35 26 49 37 38 27 | ovmpodxf | |- ( ( ph /\ w e. N ) -> ( J ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = [_ w / j ]_ X ) |
| 51 | 39 50 | eqtr4d | |- ( ( ph /\ w e. N ) -> ( I ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = ( J ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) ) |
| 52 | 51 | ralrimiva | |- ( ph -> A. w e. N ( I ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = ( J ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) ) |
| 53 | 1 11 12 3 4 16 8 9 10 52 | mdetralt | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) ) = .0. ) |