This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| Assertion | pmtrrn | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) e. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | mptexg | |- ( D e. V -> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) e. _V ) |
|
| 4 | 3 | ralrimivw | |- ( D e. V -> A. z e. { x e. ~P D | x ~~ 2o } ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) e. _V ) |
| 5 | 4 | 3ad2ant1 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> A. z e. { x e. ~P D | x ~~ 2o } ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) e. _V ) |
| 6 | eqid | |- ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) = ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) |
|
| 7 | 6 | fnmpt | |- ( A. z e. { x e. ~P D | x ~~ 2o } ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) e. _V -> ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) Fn { x e. ~P D | x ~~ 2o } ) |
| 8 | 5 7 | syl | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) Fn { x e. ~P D | x ~~ 2o } ) |
| 9 | 1 | pmtrfval | |- ( D e. V -> T = ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) ) |
| 10 | 9 | 3ad2ant1 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> T = ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) ) |
| 11 | 10 | fneq1d | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T Fn { x e. ~P D | x ~~ 2o } <-> ( z e. { x e. ~P D | x ~~ 2o } |-> ( y e. D |-> if ( y e. z , U. ( z \ { y } ) , y ) ) ) Fn { x e. ~P D | x ~~ 2o } ) ) |
| 12 | 8 11 | mpbird | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> T Fn { x e. ~P D | x ~~ 2o } ) |
| 13 | breq1 | |- ( x = P -> ( x ~~ 2o <-> P ~~ 2o ) ) |
|
| 14 | elpw2g | |- ( D e. V -> ( P e. ~P D <-> P C_ D ) ) |
|
| 15 | 14 | biimpar | |- ( ( D e. V /\ P C_ D ) -> P e. ~P D ) |
| 16 | 15 | 3adant3 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P e. ~P D ) |
| 17 | simp3 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P ~~ 2o ) |
|
| 18 | 13 16 17 | elrabd | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P e. { x e. ~P D | x ~~ 2o } ) |
| 19 | fnfvelrn | |- ( ( T Fn { x e. ~P D | x ~~ 2o } /\ P e. { x e. ~P D | x ~~ 2o } ) -> ( T ` P ) e. ran T ) |
|
| 20 | 12 18 19 | syl2anc | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) e. ran T ) |
| 21 | 20 2 | eleqtrrdi | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) e. R ) |