This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnelnfp | |- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndifnfp | |- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
|
| 2 | 1 | eleq2d | |- ( F Fn A -> ( X e. dom ( F \ _I ) <-> X e. { x e. A | ( F ` x ) =/= x } ) ) |
| 3 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 4 | id | |- ( x = X -> x = X ) |
|
| 5 | 3 4 | neeq12d | |- ( x = X -> ( ( F ` x ) =/= x <-> ( F ` X ) =/= X ) ) |
| 6 | 5 | elrab3 | |- ( X e. A -> ( X e. { x e. A | ( F ` x ) =/= x } <-> ( F ` X ) =/= X ) ) |
| 7 | 2 6 | sylan9bb | |- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |