This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmss.s | |- S = ( SymGrp ` D ) |
|
| evpmss.p | |- P = ( Base ` S ) |
||
| Assertion | evpmss | |- ( pmEven ` D ) C_ P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmss.s | |- S = ( SymGrp ` D ) |
|
| 2 | evpmss.p | |- P = ( Base ` S ) |
|
| 3 | fveq2 | |- ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) ) |
|
| 4 | 3 | cnveqd | |- ( d = D -> `' ( pmSgn ` d ) = `' ( pmSgn ` D ) ) |
| 5 | 4 | imaeq1d | |- ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
| 6 | df-evpm | |- pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) ) |
|
| 7 | fvex | |- ( pmSgn ` D ) e. _V |
|
| 8 | 7 | cnvex | |- `' ( pmSgn ` D ) e. _V |
| 9 | 8 | imaex | |- ( `' ( pmSgn ` D ) " { 1 } ) e. _V |
| 10 | 5 6 9 | fvmpt | |- ( D e. _V -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
| 11 | cnvimass | |- ( `' ( pmSgn ` D ) " { 1 } ) C_ dom ( pmSgn ` D ) |
|
| 12 | eqid | |- ( pmSgn ` D ) = ( pmSgn ` D ) |
|
| 13 | eqid | |- ( S |`s dom ( pmSgn ` D ) ) = ( S |`s dom ( pmSgn ` D ) ) |
|
| 14 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 15 | 1 12 13 14 | psgnghm | |- ( D e. _V -> ( pmSgn ` D ) e. ( ( S |`s dom ( pmSgn ` D ) ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 16 | eqid | |- ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) |
|
| 17 | eqid | |- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 18 | 16 17 | ghmf | |- ( ( pmSgn ` D ) e. ( ( S |`s dom ( pmSgn ` D ) ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( pmSgn ` D ) : ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 19 | fdm | |- ( ( pmSgn ` D ) : ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> dom ( pmSgn ` D ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) ) |
|
| 20 | 15 18 19 | 3syl | |- ( D e. _V -> dom ( pmSgn ` D ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) ) |
| 21 | 13 2 | ressbasss | |- ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) C_ P |
| 22 | 20 21 | eqsstrdi | |- ( D e. _V -> dom ( pmSgn ` D ) C_ P ) |
| 23 | 11 22 | sstrid | |- ( D e. _V -> ( `' ( pmSgn ` D ) " { 1 } ) C_ P ) |
| 24 | 10 23 | eqsstrd | |- ( D e. _V -> ( pmEven ` D ) C_ P ) |
| 25 | fvprc | |- ( -. D e. _V -> ( pmEven ` D ) = (/) ) |
|
| 26 | 0ss | |- (/) C_ P |
|
| 27 | 25 26 | eqsstrdi | |- ( -. D e. _V -> ( pmEven ` D ) C_ P ) |
| 28 | 24 27 | pm2.61i | |- ( pmEven ` D ) C_ P |