This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptcl.b | |- B = ( Base ` G ) |
|
| gsummptcl.g | |- ( ph -> G e. CMnd ) |
||
| gsummptcl.n | |- ( ph -> N e. Fin ) |
||
| gsummptcl.e | |- ( ph -> A. i e. N X e. B ) |
||
| Assertion | gsummptcl | |- ( ph -> ( G gsum ( i e. N |-> X ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptcl.b | |- B = ( Base ` G ) |
|
| 2 | gsummptcl.g | |- ( ph -> G e. CMnd ) |
|
| 3 | gsummptcl.n | |- ( ph -> N e. Fin ) |
|
| 4 | gsummptcl.e | |- ( ph -> A. i e. N X e. B ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | eqid | |- ( i e. N |-> X ) = ( i e. N |-> X ) |
|
| 7 | 6 | fmpt | |- ( A. i e. N X e. B <-> ( i e. N |-> X ) : N --> B ) |
| 8 | 4 7 | sylib | |- ( ph -> ( i e. N |-> X ) : N --> B ) |
| 9 | 6 | fnmpt | |- ( A. i e. N X e. B -> ( i e. N |-> X ) Fn N ) |
| 10 | 4 9 | syl | |- ( ph -> ( i e. N |-> X ) Fn N ) |
| 11 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) |
|
| 12 | 10 3 11 | fndmfifsupp | |- ( ph -> ( i e. N |-> X ) finSupp ( 0g ` G ) ) |
| 13 | 1 5 2 3 8 12 | gsumcl | |- ( ph -> ( G gsum ( i e. N |-> X ) ) e. B ) |