This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmf.b | |- B = ( Base ` S ) |
|
| mhmf.c | |- C = ( Base ` T ) |
||
| Assertion | mhmf | |- ( F e. ( S MndHom T ) -> F : B --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf.b | |- B = ( Base ` S ) |
|
| 2 | mhmf.c | |- C = ( Base ` T ) |
|
| 3 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 4 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 5 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 6 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 7 | 1 2 3 4 5 6 | ismhm | |- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) |
| 8 | 7 | simprbi | |- ( F e. ( S MndHom T ) -> ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) |
| 9 | 8 | simp1d | |- ( F e. ( S MndHom T ) -> F : B --> C ) |