This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zrhpsgnmhm | |- ( ( R e. Ring /\ A e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` A ) ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 2 | 1 | zrhrhm | |- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 3 | eqid | |- ( mulGrp ` ZZring ) = ( mulGrp ` ZZring ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | 3 4 | rhmmhm | |- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` R ) ) ) |
| 6 | 2 5 | syl | |- ( R e. Ring -> ( ZRHom ` R ) e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` R ) ) ) |
| 7 | eqid | |- ( SymGrp ` A ) = ( SymGrp ` A ) |
|
| 8 | eqid | |- ( pmSgn ` A ) = ( pmSgn ` A ) |
|
| 9 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 10 | 7 8 9 | psgnghm2 | |- ( A e. Fin -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 11 | ghmmhm | |- ( ( pmSgn ` A ) e. ( ( SymGrp ` A ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
|
| 12 | 10 11 | syl | |- ( A e. Fin -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 13 | eqid | |- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| 14 | 13 | cnmsgnsubg | |- { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 15 | subgsubm | |- ( { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) ) |
|
| 16 | 14 15 | ax-mp | |- { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 17 | cnring | |- CCfld e. Ring |
|
| 18 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 19 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 20 | cndrng | |- CCfld e. DivRing |
|
| 21 | 18 19 20 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 22 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 23 | 21 22 | unitsubm | |- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 24 | 13 | subsubm | |- ( ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) ) ) |
| 25 | 17 23 24 | mp2b | |- ( { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) ) |
| 26 | 16 25 | mpbi | |- ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) |
| 27 | 26 | simpli | |- { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| 28 | 1z | |- 1 e. ZZ |
|
| 29 | neg1z | |- -u 1 e. ZZ |
|
| 30 | prssi | |- ( ( 1 e. ZZ /\ -u 1 e. ZZ ) -> { 1 , -u 1 } C_ ZZ ) |
|
| 31 | 28 29 30 | mp2an | |- { 1 , -u 1 } C_ ZZ |
| 32 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 33 | 22 | subrgsubm | |- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 34 | zringmpg | |- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( mulGrp ` ZZring ) |
|
| 35 | 34 | eqcomi | |- ( mulGrp ` ZZring ) = ( ( mulGrp ` CCfld ) |`s ZZ ) |
| 36 | 35 | subsubm | |- ( ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ZZ ) ) ) |
| 37 | 32 33 36 | mp2b | |- ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ZZ ) ) |
| 38 | 27 31 37 | mpbir2an | |- { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) |
| 39 | zex | |- ZZ e. _V |
|
| 40 | ressabs | |- ( ( ZZ e. _V /\ { 1 , -u 1 } C_ ZZ ) -> ( ( ( mulGrp ` CCfld ) |`s ZZ ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 41 | 39 31 40 | mp2an | |- ( ( ( mulGrp ` CCfld ) |`s ZZ ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 42 | 34 | oveq1i | |- ( ( ( mulGrp ` CCfld ) |`s ZZ ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` ZZring ) |`s { 1 , -u 1 } ) |
| 43 | 41 42 | eqtr3i | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` ZZring ) |`s { 1 , -u 1 } ) |
| 44 | 43 | resmhm2 | |- ( ( ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) ) -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` ZZring ) ) ) |
| 45 | 12 38 44 | sylancl | |- ( A e. Fin -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` ZZring ) ) ) |
| 46 | mhmco | |- ( ( ( ZRHom ` R ) e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` R ) ) /\ ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` ZZring ) ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` A ) ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` R ) ) ) |
|
| 47 | 6 45 46 | syl2an | |- ( ( R e. Ring /\ A e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` A ) ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` R ) ) ) |