This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of addrid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddrid | |- ( A e. RR* -> ( A +e 0 ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | rexadd | |- ( ( A e. RR /\ 0 e. RR ) -> ( A +e 0 ) = ( A + 0 ) ) |
|
| 4 | 2 3 | mpan2 | |- ( A e. RR -> ( A +e 0 ) = ( A + 0 ) ) |
| 5 | recn | |- ( A e. RR -> A e. CC ) |
|
| 6 | 5 | addridd | |- ( A e. RR -> ( A + 0 ) = A ) |
| 7 | 4 6 | eqtrd | |- ( A e. RR -> ( A +e 0 ) = A ) |
| 8 | 0xr | |- 0 e. RR* |
|
| 9 | renemnf | |- ( 0 e. RR -> 0 =/= -oo ) |
|
| 10 | 2 9 | ax-mp | |- 0 =/= -oo |
| 11 | xaddpnf2 | |- ( ( 0 e. RR* /\ 0 =/= -oo ) -> ( +oo +e 0 ) = +oo ) |
|
| 12 | 8 10 11 | mp2an | |- ( +oo +e 0 ) = +oo |
| 13 | oveq1 | |- ( A = +oo -> ( A +e 0 ) = ( +oo +e 0 ) ) |
|
| 14 | id | |- ( A = +oo -> A = +oo ) |
|
| 15 | 12 13 14 | 3eqtr4a | |- ( A = +oo -> ( A +e 0 ) = A ) |
| 16 | renepnf | |- ( 0 e. RR -> 0 =/= +oo ) |
|
| 17 | 2 16 | ax-mp | |- 0 =/= +oo |
| 18 | xaddmnf2 | |- ( ( 0 e. RR* /\ 0 =/= +oo ) -> ( -oo +e 0 ) = -oo ) |
|
| 19 | 8 17 18 | mp2an | |- ( -oo +e 0 ) = -oo |
| 20 | oveq1 | |- ( A = -oo -> ( A +e 0 ) = ( -oo +e 0 ) ) |
|
| 21 | id | |- ( A = -oo -> A = -oo ) |
|
| 22 | 19 20 21 | 3eqtr4a | |- ( A = -oo -> ( A +e 0 ) = A ) |
| 23 | 7 15 22 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A +e 0 ) = A ) |
| 24 | 1 23 | sylbi | |- ( A e. RR* -> ( A +e 0 ) = A ) |