This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasdsf1o.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasdsf1o.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasdsf1o.f | |- ( ph -> F : V -1-1-onto-> B ) |
||
| imasdsf1o.r | |- ( ph -> R e. Z ) |
||
| imasdsf1o.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
||
| imasdsf1o.d | |- D = ( dist ` U ) |
||
| imasdsf1o.m | |- ( ph -> E e. ( *Met ` V ) ) |
||
| imasdsf1o.x | |- ( ph -> X e. V ) |
||
| imasdsf1o.y | |- ( ph -> Y e. V ) |
||
| Assertion | imasdsf1o | |- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasdsf1o.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasdsf1o.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasdsf1o.f | |- ( ph -> F : V -1-1-onto-> B ) |
|
| 4 | imasdsf1o.r | |- ( ph -> R e. Z ) |
|
| 5 | imasdsf1o.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
|
| 6 | imasdsf1o.d | |- D = ( dist ` U ) |
|
| 7 | imasdsf1o.m | |- ( ph -> E e. ( *Met ` V ) ) |
|
| 8 | imasdsf1o.x | |- ( ph -> X e. V ) |
|
| 9 | imasdsf1o.y | |- ( ph -> Y e. V ) |
|
| 10 | eqid | |- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 11 | eqid | |- { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
|
| 12 | eqid | |- U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) |
|
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | imasdsf1olem | |- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |