This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | op2ndg | |- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 | |- ( x = A -> <. x , y >. = <. A , y >. ) |
|
| 2 | 1 | fveqeq2d | |- ( x = A -> ( ( 2nd ` <. x , y >. ) = y <-> ( 2nd ` <. A , y >. ) = y ) ) |
| 3 | opeq2 | |- ( y = B -> <. A , y >. = <. A , B >. ) |
|
| 4 | 3 | fveq2d | |- ( y = B -> ( 2nd ` <. A , y >. ) = ( 2nd ` <. A , B >. ) ) |
| 5 | id | |- ( y = B -> y = B ) |
|
| 6 | 4 5 | eqeq12d | |- ( y = B -> ( ( 2nd ` <. A , y >. ) = y <-> ( 2nd ` <. A , B >. ) = B ) ) |
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | op2nd | |- ( 2nd ` <. x , y >. ) = y |
| 10 | 2 6 9 | vtocl2g | |- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |