This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> D e. ( *Met ` X ) ) |
|
| 2 | simp2 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 3 | simp3 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 4 | xmettri2 | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X /\ B e. X ) ) -> ( B D B ) <_ ( ( A D B ) +e ( A D B ) ) ) |
|
| 5 | 1 2 3 3 4 | syl13anc | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( B D B ) <_ ( ( A D B ) +e ( A D B ) ) ) |
| 6 | 2re | |- 2 e. RR |
|
| 7 | rexr | |- ( 2 e. RR -> 2 e. RR* ) |
|
| 8 | xmul01 | |- ( 2 e. RR* -> ( 2 *e 0 ) = 0 ) |
|
| 9 | 6 7 8 | mp2b | |- ( 2 *e 0 ) = 0 |
| 10 | xmet0 | |- ( ( D e. ( *Met ` X ) /\ B e. X ) -> ( B D B ) = 0 ) |
|
| 11 | 10 | 3adant2 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( B D B ) = 0 ) |
| 12 | 9 11 | eqtr4id | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( 2 *e 0 ) = ( B D B ) ) |
| 13 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 14 | x2times | |- ( ( A D B ) e. RR* -> ( 2 *e ( A D B ) ) = ( ( A D B ) +e ( A D B ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( 2 *e ( A D B ) ) = ( ( A D B ) +e ( A D B ) ) ) |
| 16 | 5 12 15 | 3brtr4d | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( 2 *e 0 ) <_ ( 2 *e ( A D B ) ) ) |
| 17 | 0xr | |- 0 e. RR* |
|
| 18 | 2rp | |- 2 e. RR+ |
|
| 19 | 18 | a1i | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 2 e. RR+ ) |
| 20 | xlemul2 | |- ( ( 0 e. RR* /\ ( A D B ) e. RR* /\ 2 e. RR+ ) -> ( 0 <_ ( A D B ) <-> ( 2 *e 0 ) <_ ( 2 *e ( A D B ) ) ) ) |
|
| 21 | 17 13 19 20 | mp3an2i | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( 0 <_ ( A D B ) <-> ( 2 *e 0 ) <_ ( 2 *e ( A D B ) ) ) ) |
| 22 | 16 21 | mpbird | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |