This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is finite. (Contributed by NM, 4-Nov-2002) (Proof shortened by BTernaryTau, 13-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfi | |- { A } e. Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | |- 1o e. _om |
|
| 2 | ensn1g | |- ( A e. _V -> { A } ~~ 1o ) |
|
| 3 | breq2 | |- ( x = 1o -> ( { A } ~~ x <-> { A } ~~ 1o ) ) |
|
| 4 | 3 | rspcev | |- ( ( 1o e. _om /\ { A } ~~ 1o ) -> E. x e. _om { A } ~~ x ) |
| 5 | 1 2 4 | sylancr | |- ( A e. _V -> E. x e. _om { A } ~~ x ) |
| 6 | isfi | |- ( { A } e. Fin <-> E. x e. _om { A } ~~ x ) |
|
| 7 | 5 6 | sylibr | |- ( A e. _V -> { A } e. Fin ) |
| 8 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 9 | 0fi | |- (/) e. Fin |
|
| 10 | eleq1 | |- ( { A } = (/) -> ( { A } e. Fin <-> (/) e. Fin ) ) |
|
| 11 | 9 10 | mpbiri | |- ( { A } = (/) -> { A } e. Fin ) |
| 12 | 8 11 | sylbi | |- ( -. A e. _V -> { A } e. Fin ) |
| 13 | 7 12 | pm2.61i | |- { A } e. Fin |