This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| Assertion | xrs10 | |- 0 = ( 0g ` R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 2 | difss | |- ( RR* \ { -oo } ) C_ RR* |
|
| 3 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 4 | 1 3 | ressbas2 | |- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 5 | 2 4 | ax-mp | |- ( RR* \ { -oo } ) = ( Base ` R ) |
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | xrex | |- RR* e. _V |
|
| 8 | 7 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 9 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 10 | 1 9 | ressplusg | |- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
| 11 | 8 10 | ax-mp | |- +e = ( +g ` R ) |
| 12 | 0re | |- 0 e. RR |
|
| 13 | rexr | |- ( 0 e. RR -> 0 e. RR* ) |
|
| 14 | renemnf | |- ( 0 e. RR -> 0 =/= -oo ) |
|
| 15 | eldifsn | |- ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) ) |
|
| 16 | 13 14 15 | sylanbrc | |- ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) ) |
| 17 | 12 16 | mp1i | |- ( T. -> 0 e. ( RR* \ { -oo } ) ) |
| 18 | eldifi | |- ( x e. ( RR* \ { -oo } ) -> x e. RR* ) |
|
| 19 | 18 | adantl | |- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> x e. RR* ) |
| 20 | xaddlid | |- ( x e. RR* -> ( 0 +e x ) = x ) |
|
| 21 | 19 20 | syl | |- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( 0 +e x ) = x ) |
| 22 | 19 | xaddridd | |- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( x +e 0 ) = x ) |
| 23 | 5 6 11 17 21 22 | ismgmid2 | |- ( T. -> 0 = ( 0g ` R ) ) |
| 24 | 23 | mptru | |- 0 = ( 0g ` R ) |