This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcoconst | |- ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( I X. { ( F ` Y ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( F Fn X /\ Y e. X ) /\ x e. I ) -> Y e. X ) |
|
| 2 | fconstmpt | |- ( I X. { Y } ) = ( x e. I |-> Y ) |
|
| 3 | 2 | a1i | |- ( ( F Fn X /\ Y e. X ) -> ( I X. { Y } ) = ( x e. I |-> Y ) ) |
| 4 | simpl | |- ( ( F Fn X /\ Y e. X ) -> F Fn X ) |
|
| 5 | dffn2 | |- ( F Fn X <-> F : X --> _V ) |
|
| 6 | 4 5 | sylib | |- ( ( F Fn X /\ Y e. X ) -> F : X --> _V ) |
| 7 | 6 | feqmptd | |- ( ( F Fn X /\ Y e. X ) -> F = ( y e. X |-> ( F ` y ) ) ) |
| 8 | fveq2 | |- ( y = Y -> ( F ` y ) = ( F ` Y ) ) |
|
| 9 | 1 3 7 8 | fmptco | |- ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( x e. I |-> ( F ` Y ) ) ) |
| 10 | fconstmpt | |- ( I X. { ( F ` Y ) } ) = ( x e. I |-> ( F ` Y ) ) |
|
| 11 | 9 10 | eqtr4di | |- ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( I X. { ( F ` Y ) } ) ) |