This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of leadd1 ; note that the converse implication is not true, unlike the real version (for example 0 < 1 but ( 1 +e +oo ) <_ ( 0 +e +oo ) ). (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xleadd1a | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) <_ ( B +e C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> A e. RR ) |
|
| 2 | simpr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> B e. RR ) |
|
| 3 | simplrl | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> C e. RR ) |
|
| 4 | simpllr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> A <_ B ) |
|
| 5 | 1 2 3 4 | leadd1dd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A + C ) <_ ( B + C ) ) |
| 6 | 1 3 | rexaddd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A +e C ) = ( A + C ) ) |
| 7 | 2 3 | rexaddd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( B +e C ) = ( B + C ) ) |
| 8 | 5 6 7 | 3brtr4d | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
| 9 | simpl1 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> A e. RR* ) |
|
| 10 | simpl3 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> C e. RR* ) |
|
| 11 | xaddcl | |- ( ( A e. RR* /\ C e. RR* ) -> ( A +e C ) e. RR* ) |
|
| 12 | 9 10 11 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) e. RR* ) |
| 13 | 12 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) e. RR* ) |
| 14 | pnfge | |- ( ( A +e C ) e. RR* -> ( A +e C ) <_ +oo ) |
|
| 15 | 13 14 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) <_ +oo ) |
| 16 | oveq1 | |- ( B = +oo -> ( B +e C ) = ( +oo +e C ) ) |
|
| 17 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 18 | renemnf | |- ( C e. RR -> C =/= -oo ) |
|
| 19 | xaddpnf2 | |- ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) |
|
| 20 | 17 18 19 | syl2anc | |- ( C e. RR -> ( +oo +e C ) = +oo ) |
| 21 | 20 | ad2antrl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( +oo +e C ) = +oo ) |
| 22 | 16 21 | sylan9eqr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( B +e C ) = +oo ) |
| 23 | 15 22 | breqtrrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 24 | 12 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) e. RR* ) |
| 25 | 24 | xrleidd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) <_ ( A +e C ) ) |
| 26 | simplr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A <_ B ) |
|
| 27 | simpr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> B = -oo ) |
|
| 28 | 9 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A e. RR* ) |
| 29 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 30 | 28 29 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> -oo <_ A ) |
| 31 | 27 30 | eqbrtrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> B <_ A ) |
| 32 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> B e. RR* ) |
|
| 33 | xrletri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
|
| 34 | 9 32 33 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 35 | 34 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 36 | 26 31 35 | mpbir2and | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> A = B ) |
| 37 | 36 | oveq1d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) = ( B +e C ) ) |
| 38 | 25 37 | breqtrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 39 | 38 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 40 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 41 | 32 40 | sylib | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 42 | 41 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 43 | 8 23 39 42 | mpjao3dan | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ ( C e. RR /\ A e. RR ) ) -> ( A +e C ) <_ ( B +e C ) ) |
| 44 | 43 | anassrs | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
| 45 | 12 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) e. RR* ) |
| 46 | 45 | xrleidd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) <_ ( A +e C ) ) |
| 47 | simplr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A <_ B ) |
|
| 48 | pnfge | |- ( B e. RR* -> B <_ +oo ) |
|
| 49 | 32 48 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> B <_ +oo ) |
| 50 | 49 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> B <_ +oo ) |
| 51 | simpr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A = +oo ) |
|
| 52 | 50 51 | breqtrrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> B <_ A ) |
| 53 | 34 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 54 | 47 52 53 | mpbir2and | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> A = B ) |
| 55 | 54 | oveq1d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) = ( B +e C ) ) |
| 56 | 46 55 | breqtrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 57 | 56 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 58 | oveq1 | |- ( A = -oo -> ( A +e C ) = ( -oo +e C ) ) |
|
| 59 | renepnf | |- ( C e. RR -> C =/= +oo ) |
|
| 60 | xaddmnf2 | |- ( ( C e. RR* /\ C =/= +oo ) -> ( -oo +e C ) = -oo ) |
|
| 61 | 17 59 60 | syl2anc | |- ( C e. RR -> ( -oo +e C ) = -oo ) |
| 62 | 61 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( -oo +e C ) = -oo ) |
| 63 | 58 62 | sylan9eqr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( A +e C ) = -oo ) |
| 64 | xaddcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
|
| 65 | 32 10 64 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B +e C ) e. RR* ) |
| 66 | 65 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( B +e C ) e. RR* ) |
| 67 | mnfle | |- ( ( B +e C ) e. RR* -> -oo <_ ( B +e C ) ) |
|
| 68 | 66 67 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> -oo <_ ( B +e C ) ) |
| 69 | 63 68 | eqbrtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) /\ A = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 70 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 71 | 9 70 | sylib | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 72 | 71 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 73 | 44 57 69 72 | mpjao3dan | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C e. RR ) -> ( A +e C ) <_ ( B +e C ) ) |
| 74 | 38 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 75 | 12 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) e. RR* ) |
| 76 | 75 14 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) <_ +oo ) |
| 77 | simplr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> C = +oo ) |
|
| 78 | 77 | oveq2d | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e C ) = ( B +e +oo ) ) |
| 79 | 32 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) -> B e. RR* ) |
| 80 | xaddpnf1 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
|
| 81 | 79 80 | sylan | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
| 82 | 78 81 | eqtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( B +e C ) = +oo ) |
| 83 | 76 82 | breqtrrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) /\ B =/= -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 84 | 74 83 | pm2.61dane | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 85 | 56 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A = +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 86 | simplr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> C = -oo ) |
|
| 87 | 86 | oveq2d | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) = ( A +e -oo ) ) |
| 88 | 9 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) -> A e. RR* ) |
| 89 | xaddmnf1 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
|
| 90 | 88 89 | sylan | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
| 91 | 87 90 | eqtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) = -oo ) |
| 92 | 65 | ad2antrr | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( B +e C ) e. RR* ) |
| 93 | 92 67 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> -oo <_ ( B +e C ) ) |
| 94 | 91 93 | eqbrtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) /\ A =/= +oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 95 | 85 94 | pm2.61dane | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) /\ C = -oo ) -> ( A +e C ) <_ ( B +e C ) ) |
| 96 | elxr | |- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
|
| 97 | 10 96 | sylib | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 98 | 73 84 95 97 | mpjao3dan | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) <_ ( B +e C ) ) |