This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrgelb | |- ( ( A C_ RR* /\ B e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> A. x e. A B <_ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | |- < Or RR* |
|
| 2 | 1 | a1i | |- ( A C_ RR* -> < Or RR* ) |
| 3 | xrinfmss | |- ( A C_ RR* -> E. z e. RR* ( A. y e. A -. y < z /\ A. y e. RR* ( z < y -> E. x e. A x < y ) ) ) |
|
| 4 | id | |- ( A C_ RR* -> A C_ RR* ) |
|
| 5 | 2 3 4 | infglbb | |- ( ( A C_ RR* /\ B e. RR* ) -> ( inf ( A , RR* , < ) < B <-> E. x e. A x < B ) ) |
| 6 | 5 | notbid | |- ( ( A C_ RR* /\ B e. RR* ) -> ( -. inf ( A , RR* , < ) < B <-> -. E. x e. A x < B ) ) |
| 7 | ralnex | |- ( A. x e. A -. x < B <-> -. E. x e. A x < B ) |
|
| 8 | 6 7 | bitr4di | |- ( ( A C_ RR* /\ B e. RR* ) -> ( -. inf ( A , RR* , < ) < B <-> A. x e. A -. x < B ) ) |
| 9 | id | |- ( B e. RR* -> B e. RR* ) |
|
| 10 | infxrcl | |- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
|
| 11 | xrlenlt | |- ( ( B e. RR* /\ inf ( A , RR* , < ) e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> -. inf ( A , RR* , < ) < B ) ) |
|
| 12 | 9 10 11 | syl2anr | |- ( ( A C_ RR* /\ B e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> -. inf ( A , RR* , < ) < B ) ) |
| 13 | simplr | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> B e. RR* ) |
|
| 14 | simpl | |- ( ( A C_ RR* /\ B e. RR* ) -> A C_ RR* ) |
|
| 15 | 14 | sselda | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> x e. RR* ) |
| 16 | 13 15 | xrlenltd | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> ( B <_ x <-> -. x < B ) ) |
| 17 | 16 | ralbidva | |- ( ( A C_ RR* /\ B e. RR* ) -> ( A. x e. A B <_ x <-> A. x e. A -. x < B ) ) |
| 18 | 8 12 17 | 3bitr4d | |- ( ( A C_ RR* /\ B e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> A. x e. A B <_ x ) ) |